scholarly journals The study of antimicrobial properties of film materials based on biopolymers and antiseptics

Author(s):  
A. A. Nazarchuk ◽  
T. V. Denisko ◽  
N. I. Voloshchuk ◽  
H. H. Nazarchuk

The development of new biomaterials with improved properties is becoming increasingly important in a wide range of applications. However, some of the most sought-after properties are anti-microbial properties, which can help prevent unwanted wound infections, especially in the face of growing antibiotic resistance of bacteria. The aim of the study was to study the effect of antimicrobial biomaterials based on calcium alginate, as a polymer system of local prolonged delivery of quaternary ammonium compounds, on reference and clinical strains of microorganisms. Samples of antimicrobial biomaterials contained decamethoxin (0.03-0.07 wt%), and polymers (polyvinyl alcohol and calcium alginate). Reference and clinical strains of Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa were used for the study. The sensitivity of strains of microorganisms was determined by the disk-diffusion method according to the generally accepted method. The result of antimicrobial activity was assessed after 24 hours. The mean (M), the mean error of the mean (± m), and the criterion for the significance of differences (p) were calculated. The presence of differences between the research data was assessed by the Student's t-criterion. The results were considered reliable at p<0.05. High antimicrobial properties of the studied samples of antimicrobial biomaterials based on calcium alginate and decamethoxin have been established. It was revealed that the samples of polymeric biomaterials have a higher activity against gram-positive microorganisms compared to gram-negative strains. The composition is not inferior to the antimicrobial effect of a solution of decamethoxin and chlorhexidine in relation to all strains of microorganisms.

Nanomaterials ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Lian-Hua Fu ◽  
Qing-Long Gao ◽  
Chao Qi ◽  
Ming-Guo Ma ◽  
Jun-Feng Li

Silver-based antimicrobial nanomaterials are considered as the most promising antibacterial agents owing to their outstanding antimicrobial efficacy and their relatively low toxicity to human beings. In this work, we report on a facile and environment-friendly microwave-hydrothermal method to prepare cellulose/Ag nanocomposites using hemicellulose as the reductant. The influences of the microwave-hydrothermal heating time and temperature, as well as the hemicellulose concentration on the formation of cellulose nanocomposites, were investigated in detail. Experimental results indicated that the hemicellulose was an effective reductant for silver ions, with higher temperature and longer heating time favoring the formation of silver with higher crystallinity and mass content in the nanocomposites. Moreover, the antimicrobial properties of the as-prepared cellulose/Ag nanocomposites were explored using Gram-positive S. aureus ATCC 6538 and Gram-negative E. coli HB 101 by both disc diffusion method and agar dilution method, and the nanocomposites showed excellent antibacterial activity. These results demonstrate that the as-prepared cellulose/Ag nanocomposites, as a kind of antibacterial material, are promising for applications in a wide range of biomedical fields.


2013 ◽  
Vol 14 (5) ◽  
pp. 924-929 ◽  
Author(s):  
Reena Kulshrestha ◽  
J Kranthi ◽  
P Krishna Rao ◽  
Feroz Jenner ◽  
V Abdul Jaleel ◽  
...  

ABSTRACT Aim The present study was conducted to evaluate the efficacy of commercially available herbal toothpastes against the different periodontopathogens. Materials and methods Six herbal toothpastes that were commonly commercially available were included in the study. Colgate herbal, Babool, Meswak, Neem active, Dabur red toothpastes were tested for the study whereas sterile normal saline was used as control. Antimicrobial efficacies of dentifrices were evaluated against Streptococcus mutans and Actinobacillus actinomycetemcomitans. The antimicrobial properties of dentifrices were tested by measuring the maximum zone of inhibition at 24 hours on the Mueller Hinton Agar media inoculated with microbial strain using disk diffusion method. Each dentifrice was tested at 100% concentration (full strength). Results The study showed that all dentifrices selected for the study were effective against the entire test organism but to varying degree. Neem active tooth paste gave a reading of 25.4 mm as the zone of inhibition which was highest amongst all of the test dentifrices. Colgate Herbal and Meswak dentifrices recorded a larger maximum zone of inhibition, measuring 23 and 22.6 mm respectively, compared to other toothpastes. All other dentifrices showed the zone of inhibition to be between 17 and 19 mm respectively. Conclusion The antibacterial properties of six dentifrices were studied in vitro and concluded that almost all of the dentifrices available commercially had antibacterial properties to some extent to benefit dental health or antiplaque action. How to cite this article Jenner F, Jaleel VA, Kulshrestha R, Maheswar G, Rao PK, Kranthi J. Evaluating the Antimicrobial Activity of Commercially Available Herbal Toothpastes on Microorganisms Associated with Diabetes Mellitus. J Contemp Dent Pract 2013;14(5):924-929.


Author(s):  
Abolfazl Jafari-Sales ◽  
Zahra Sadeghi Deylamdeh ◽  
Afsoon Shariat

Introduction: Staphylococcus aureus causes a wide range of infections and as a multivalent pathogen is one of the causative agents of nosocomial and community infections. Therefore, the aim of this study was to identify and determine the pattern of antibiotic resistance of methicillin-resistant Staphylococcus aureus (MRSA) isolates from patients in hospitals and medical centers in Marand city and also to evaluate the presence of mecA gene. Materials and Methods: In this cross-sectional descriptive study, 385 samples of S. aureus were collected from different clinical samples of patients in hospitals and medical centers of Marand city. S. aureus was identified using standard biochemical methods.  Methicillin resistance was determined by disk diffusion method in the presence of oxacillin and cefoxitin. The pattern of antibiotic resistance of the strains was determined by disk diffusion method and according to CLSI recommendation and also PCR method was used to evaluate the frequency of MecA gene. Results: In the present study, out of 385 samples of S. aureus, 215 (55.84%) samples were methicillin resistant. PCR results for mecA gene showed that 110 samples had mecA gene.  The highest antibiotic resistance was observed against penicillin (100%) and erythromycin (83.63%). Most MRSA were isolated from urine and wound samples. Conclusion: The results of this study indicate the prevalence of methicillin-resistant species and also the increase in antibiotic resistance of MRSA to various antibiotics.  Therefore, in order to prevent increased resistance to other antibiotics, it is recommended to avoid inappropriate use of antibiotics.


2016 ◽  
Vol 11 (6) ◽  
pp. 1934578X1601100 ◽  
Author(s):  
Giovanna Pesavento ◽  
Valentina Maggini ◽  
Isabel Maida ◽  
Antonella Lo Nostro ◽  
Carmela Calonico ◽  
...  

Essential oils (EOs) are known to inhibit the growth of a wide range of microorganisms. Particularly interesting is the possible use of EOs to treat multidrug-resistant cystic fibrosis (CF) pathogens. We tested the essential oil (EO) from Origanum vulgare for in vitro antimicrobial activity, against three of the major human opportunistic pathogens responsible for respiratory infections in CF patients; these are methicillin-resistant Staphylococcus aureus, Stenotrophomonas maltophilia and Achromobacter xylosoxidans. Antibiotic susceptibility of each strain was previously tested by the standard disk diffusion method. Most strains were resistant to multiple antibiotics and could be defined as multi-drug-resistant (MDR). The antibacterial activity of O. vulgare EO (OEO) against a panel of 59 bacterial strains was evaluated, with MIC and MBC determined at 24, 48 and 72 hours by a microdilution method. The OEO was effective against all tested strains, although to a different extent. The MBC and MIC of OEO for S. aureus strains were either lower or equal to 0.50%, v/v, for A. xylosoxidans strains were lower or equal to 1% and 0.50%, v/v, respectively; and for S. maltophilia strains were lower or equal to 0.25%, v/v. The results from this study suggest that OEO might exert a role as an antimicrobial in the treatment of CF infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Pavithra L. Jayatilake ◽  
Helani Munasinghe

Endophytic and rhizosphere fungi are understood to be aiding the host plant to overcome a range of biotic and abiotic stresses (nutrition depletion, droughts, etc.) hence, they remain to be reservoirs of plethora of natural products with immense use. Consequently, this investigation of endophytic and rhizosphere fungi isolated from Mikania cordata (a perennial vine that is well established in Sri Lanka) for their antimicrobial properties was performed with the aim of future derivation of potential beneficial pharmaceutical products. Leaves, twigs, and roots of M. cordata were utilized to isolate a total of 9 endophytic fungi out of which the highest amount (44%) accounted was from the twigs. A sample of the immediate layer of soil adhering to the root of M. cordata was utilized to isolate 15 rhizosphere fungi. Fusarium equiseti and Phoma medicaginis were endophytes that were identified based on colony and molecular characteristics. The broad spectrum of antimicrobial activity depicted by F. equiseti (MK517551) was found to be significantly greater (p≤0.05, inhibitory against Bacillus cereus ATCC 11778, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) than P. medicaginis (MK517550) (inhibitory against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, and Pseudomonas aeruginosa ATCC 25853) as assessed using the Kirby-Bauer disk diffusion method. Trichoderma virens and Trichoderma asperellum were rhizospere fungi that exhibited remarkable antimicrobial properties against the test pathogens chosen for the study. T. asperellum indicated significantly greater bioactivity against all four bacterial pathogens and Candida albicans ATCC 10231 under study. The ranges of minimum inhibitory concentrations (MICs) of the fungi depicting antimicrobial properties were determined. The results obtained suggest that F. equiseti, P. medicaginis, T. asperellum, and T. virens of M. cordata harness bioprospective values as natural drug candidates. This is the first report on isolation and evaluation of the antimicrobial properties of endophytic and rhizosphere fungi of Mikania cordata.


2017 ◽  
Vol 751 ◽  
pp. 270-276 ◽  
Author(s):  
Warot Prasanseang ◽  
Chaval Sriwong ◽  
Kittisak Choojun

Ag-natural rubber (Ag-NR) hybrid sheets were successfully prepared with a very simple and low cost method. In this method, silver nanoparticles (AgNPs) were firstly synthesized by a rapid and green microwave-assisted using polyvinylpyrroridone (PVP) media. The effect of PVP weight ratios towards the size of AgNPs was also investigated. Then, Ag-NR hybrid sheet samples were prepared by latex mixing-casting method using concentrated natural rubber (NR) latex with the synthesized AgNPs colloids. The characteristic absorption, particles sizes and shapes of the obtained AgNPs were examined through UV-vis, TEM and SAED. Also, the prepared Ag-NR sheet samples were characterized using XRD, FT-IR, SEM and EDS techniques. It was found that the particles sizes of all the synthesized AgNPs had spherical-like shape, and the mean sizes were increased from 29.7 to 90.4 nm upon increasing PVP contents. EDS results showed the AgNPs were well-dispersed and impregnated into the rubber matrix. Moreover, the antibacterial properties of the prepared Ag-NR sheets were tested by agar disk-diffusion method with Gram-positive and Gram-negative bacteria as Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli), respectively. The results showed that the hybrid sheets exhibited excellent antibacterial properties against these bacteria, in which the zones of inhibition were also dependent on the synthesized AgNPs by utilizing the different amounts of PVP.


Author(s):  
Mojtaba Mohammadzadeh-Vazifeh ◽  
Seyed Masoud Hosseini ◽  
Ali Mohammadi ◽  
Mahdi Jahanfar ◽  
Hadi Maleki

  Background and Objectives: In recent years, active packaging has been introduced as a new method to better preserve food. Chitosan and nanoclay have been used for preparation of an active nanocomposite with respect to their antimicrobial properties to investigate its effects on the microbial limitation in Gouda cheese. Materials and Methods: Nanoclay film, chitosan film, chitosan-based nanocomposites and nanoclay-based nanocompos- ites were prepared and their antimicrobial properties were evaluated to the microbial limitations of Gouda cheese con- sist of coliforms, Escherichia coli, Salmonella spp., coagulase-positive Staphylococcus, mold and yeast by agar diffusion method. Results: The results indicated, the best antimicrobial effect belonged to nanocomposite film with the composition of chitosan 3 wt% by adding nanoclay 1 wt%, which can prevent microbial characteristics of Gouda cheese. Conclusion: The chitosan and nanoclay nanocomposite had excellent antibacterial activity and performed well against microbial limitations (coliforms, E. coli, Salmonella spp., coagulase-positive Staphylococcus, mold and yeast) of Gouda cheese. Therefore, the nanocomposite may be possibly used as a surface coating in addition to Gouda cheese as well as sim- ilar cheeses and other food to enhance microbial characteristics and extend shelf life.


2009 ◽  
Vol 57 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Boglárka Sellyei ◽  
Zsuzsanna Varga ◽  
Katalin Szentesi-Samu ◽  
Éva Kaszanyitzky ◽  
Tibor Magyar

Pasteurella multocida causes infectious diseases in a wide range of animal species. Antimicrobial therapy is still an effective tool for treatment. Generally, P. multocida isolates are susceptible to most of the widely used commercial antimicrobial agents but their excessive and unjustified use accelerates the emergence of resistant strains. We defined the antimicrobial sensitivity pattern of 56 P. multocida strains isolated from poultry (20) and swine [16 P. multocida toxin (PMT) positive and 20 PMT negative] to 16 widely applied antibiotics (apramycin, cefquinome, chloramphenicol, colistin, doxycycline, enrofloxacin, erythromycin, florfenicol, flumequine, neomycin, oxolinic acid, penicillin, trimethoprim potentiated sulphamethoxazole, sulphonamide compounds, tetracycline, tulathromycin) by the disk diffusion method. The majority of the strains was susceptible to most of the antimicrobial agents tested. However, the resistance to sulphonamides, tetracyclines, first-generation quinolones and aminoglycosides was remarkable, and thus the use of these compounds for the treatment of infection caused by P. multocida is not recommended. On the other hand, the antimicrobial activity of the classical penicillin, the newer macrolide (tulathromycin), the third-generation fluoroquinolone (enrofloxacin) and the fourth-generation cephalosporin (cefquinome) proved to be satisfactory against this bacterium.


Author(s):  
Mahin Jamshidi Makiani ◽  
Maryam Farasatinasab ◽  
Sam Bemani ◽  
Hoda Namdari Moghadam ◽  
Fatemeh Sheibani ◽  
...  

Background: Nosocomial infections are associated with increased morbidity, mortality, and medical burdens. Pseudomonas aeruginosa and Acinetobacter baumannii are not-fermentative gram-negative bacteria that considered as the most important nosocomial infection. In the current study, we have aimed to evaluate the sensitivity of Acinetobacter baumannii and Pseudomonas aeruginosa microorganisms to the colistin antibiotic. Methods: In this descriptive cross-sectional study, patients admitted to the ICU ward of Firoozgar Hospital from July 2018 to March 2019 were evaluated, and 169 Patients infected with Acinetobacter baumannii, and Pseudomonas aeruginosa were included. Acinetobacter baumannii and Pseudomonas aeruginosa were isolated, and antibiotic sensitivity was determined by the disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI) criteria. E test was also used to determine MIC-50 and MIC-90 of colistin. Results: Acinetobacter baumannii was around 8 times more frequent than Pseudomonas aeruginosa. Colistin resistance was detected in only 4(2.4%). The mean age of patients infected by Acinetobacter baumannii was significantly higher than those infected with Pseudomonas aeruginosa. Moreover, the mean time of the hospitalization period did not show any significant differences in the different groups. Conclusion: Our findings indicated that the majority of isolated Pseudomonas aeruginosa and Acinetobacter baumannii were sensitive to Colistin. Therefore, it could be effectively used for patients with a confirmed diagnosis of Pseudomonas aeruginosa and Acinetobacter baumannii.


2020 ◽  
Vol 3 (1) ◽  
pp. 01-03
Author(s):  
Md. Shahidul Islam

The review study work comprises of interaction studies of cefixime with different group of drugs and metals to know about the alteration in pharmacological activity of cefixime by other drugs or vice versa. Cefixime is included among the cephalosporin third generation drug class which is active against a wide range of Gram positive and Gram negative bacteria. Since the presence of different therapeutic class of drugs like cefixime may affect the bioavailability as well as pharmacokinetics of other drugs and metal in the blood or tissues, therefore in order to study the potential interaction of cefixime with different therapeutic class of drugs and metals which can show several type of toxicity or may develop drug resistance in the body is the main reason to perform this study. About 102 articles were screened from different databases related to Cefixime and its interaction for this review. This review study claims that there is a possible interaction between cefixime and other drugs& metals which are confirmed by different method like GLC, HPLC, and Disk Diffusion Method. Drug resistance and unwanted adverse drug reactions are a common thing for different underlying factors which becomes an alarming issue. That’s why this is significant.


Sign in / Sign up

Export Citation Format

Share Document