Enhanced Failure Analysis on Open TSV Interconnects

Author(s):  
F. Altmann ◽  
C. Schmidt ◽  
J. Beyersdorfer ◽  
M. Simon-Najasek ◽  
C. Große ◽  
...  

Abstract In this paper different methods and novel tools for failure localisation and high resolution material analysis for open TSV interconnects will be discussed. The paper shows the application of enhanced methods for the localisation of sidewall shorts in open TSV structures by adapted Photoemission Microscopy (PEM), Lock-in Thermography (LIT) and Electron Beam Absorbed Imaging (EBAC). In addition, a new highly efficient target preparation technique is presented, which allows the combination of Laser and FIB milling, in order to access TSV sidewall defects. Finally the use of this technique is demonstrated in a failure analysis case study.

Author(s):  
Erik Paul ◽  
Holger Herzog ◽  
Sören Jansen ◽  
Christian Hobert ◽  
Eckhard Langer

Abstract This paper presents an effective device-level failure analysis (FA) method which uses a high-resolution low-kV Scanning Electron Microscope (SEM) in combination with an integrated state-of-the-art nanomanipulator to locate and characterize single defects in failing CMOS devices. The presented case studies utilize several FA-techniques in combination with SEM-based nanoprobing for nanometer node technologies and demonstrate how these methods are used to investigate the root cause of IC device failures. The methodology represents a highly-efficient physical failure analysis flow for 28nm and larger technology nodes.


Author(s):  
P. Larré ◽  
H. Tupin ◽  
C. Charles ◽  
R.H. Newton ◽  
A. Reverdy

Abstract As technology nodes continue to shrink, resistive opens have become increasingly difficult to detect using conventional methods such as AVC and PVC. The failure isolation method, Electron Beam Absorbed Current (EBAC) Imaging has recently become the preferred method in failure analysis labs for fast and highly accurate detection of resistive opens and shorts on a number of structures. This paper presents a case study using a two nanoprobe EBAC technique on a 28nm node test structure. This technique pinpointed the fail and allowed direct TEM lamella.


Author(s):  
L. Forli ◽  
B. Picart ◽  
A. Reverdy ◽  
R. Schlangen

Abstract In this paper, we demonstrate that lock-in thermography (LIT) appears as a key and complementary technique for Failure Analysis across different use cases. Even if the failure requires a complex emulation setup, thanks to a specific capability of our thermal system, this kind of failure can be addressed. In our FA case study, we will show that LIT is a most efficient solution to address a bridge defect located inside a complex logic area, and furthermore that LIT highlights the defect itself and not only the consequences of the defect.


Author(s):  
Vikash Kumar ◽  
Devraj Karthikeyan

Abstract Fault localization is a common failure analysis process that is used to detect the anomaly on a faulty device. The Infrared Lock-In Thermography (LIT) is one of the localization techniques which can be used on the packaged chips for identifying the heat source which is a result of active damage. This paper extends the idea that the LIT analysis for fault localization is not only limited to the devices within the silicon die but it also highlights thermal failure indications of other components on the PCB (like capacitors, FETs etc on a system level DC-DC μmodule). The case studies presented demonstrate the effectiveness of using LIT in the Failure analysis process of a system level DC-DC μmodule regulator


Author(s):  
Felix Rolf ◽  
Christian Hollerith ◽  
Christian Feuerbaum

Abstract With decreasing transistor sizes accurate failure localization becomes more and more important in order to find the root cause of failures with high efficiency. Field returns are a special challenge, since there is usually only one sample for preparation. Hence, reliable high resolution localization is mandatory for a successful preparation. Optical beam induced resistance change (OBIRCH) is a powerful tool for localization but has resolution limitations due to the diameter of the optical beam. The tool can be further improved by the lock-in technique. In this paper we demonstrate that the lock-in technique can also be applied for electron beam localization methods like electron beam induced current (EBIC) / electron beam absorbed current (EBAC) and resistance change imaging (RCI) / electron beam induced resistance change (EBIRCH).


Author(s):  
Naoki Seimiya ◽  
Takuhei Watanabe ◽  
Takashi Ichinomiya

Abstract We developed the non-destructive failure analysis method that is combination of Lock-in thermography (LIT) and high resolution 3D oblique CT. It made possible to complete the total analysis efficiently, because we can distinguish the type of failure by this non-destructive method.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000338-000342
Author(s):  
Robert Klengel ◽  
Sandy Klengel ◽  
Bianca Böttge

The high-resolution failure analysis of power electronic devices is very challenging, as relatively large features have to be accessed and analyzed with nanometer resolution. Recently new tools have been introduced for fast and efficient sample preparation of stacked devices and complex packages. One of them is the focused ion beam (FIB) technique using a high energy Xenon Plasma-FIB. This paper outlines preparation issues needed to find the physics of failure of large and complex devices as used in power electronics. Different methods like high throughput Plasma FIB preparation to combined Laser-FIB preparation are compared. Additionally an innovative mechanical preparation technique developed for interface defect preparation of power electronic materials will be introduced. Within the paper selected case studies regarding reliability investigations and failure analysis are presented for example on silver sinter layers and bond wire contacts done by high resolution Transmission Electron Microscopy (TEM). In addition, an assessment of the analysis throughput increase, of new extended application ranges and current limitations will be given.


Author(s):  
David Joy ◽  
James Pawley

The scanning electron microscope (SEM) builds up an image by sampling contiguous sub-volumes near the surface of the specimen. A fine electron beam selectively excites each sub-volume and then the intensity of some resulting signal is measured. The spatial resolution of images made using such a process is limited by at least three factors. Two of these determine the size of the interaction volume: the size of the electron probe and the extent to which detectable signal is excited from locations remote from the beam impact point. A third limitation emerges from the fact that the probing beam is composed of a finite number of discrete particles and therefore that the accuracy with which any detectable signal can be measured is limited by Poisson statistics applied to this number (or to the number of events actually detected if this is smaller).


Author(s):  
George C. Ruben

Single molecule resolution in electron beam sensitive, uncoated, noncrystalline materials has been impossible except in thin Pt-C replicas ≤ 150Å) which are resistant to the electron beam destruction. Previously the granularity of metal film replicas limited their resolution to ≥ 20Å. This paper demonstrates that Pt-C film granularity and resolution are a function of the method of replication and other controllable factors. Low angle 20° rotary , 45° unidirectional and vertical 9.7±1 Å Pt-C films deposited on mica under the same conditions were compared in Fig. 1. Vertical replication had a 5A granularity (Fig. 1c), the highest resolution (table), and coated the whole surface. 45° replication had a 9Å granulartiy (Fig. 1b), a slightly poorer resolution (table) and did not coat the whole surface. 20° rotary replication was unsuitable for high resolution imaging with 20-25Å granularity (Fig. 1a) and resolution 2-3 times poorer (table). Resolution is defined here as the greatest distance for which the metal coat on two opposing faces just grow together, that is, two times the apparent film thickness on a single vertical surface.


Author(s):  
K. Ogura ◽  
T. Suzuki ◽  
C. Nielsen

In spite of the complicated specimen preparation, Transmission Electron Microscopes (TEM) have traditionally been used for the investigation of the fine grain structures of sintered ceramics. Scanning Electron Microscopes (SEM) have not been used much for the same purpose as TEM because of poor results caused by the specimen charging effect, and also the lack of sufficient resolution. Here, we are presenting a successful result of high resolution imaging of sintered alumina (pure Al2O3) using the Specimen Heated and Electron Beam Induced Conductivity (SHEBIC) method, which we recently reported, in an ultrahigh resolution SEM (UHR-SEM). The JSM-6000F, equipped with a Field Emission Gun (FEG) and an in-lens specimen position, was used for this application.After sintered Al2O3 was sliced into a piece approximately 0.5 mm in thickness, one side was mechanically polished to get a shiny plane for the observation. When the observation was started at 20 kV, an enormous charging effect occured, and it was impossible to obtain a clear Secondary Electron (SE) image (Fig.1).


Sign in / Sign up

Export Citation Format

Share Document