scholarly journals Modificação das propriedades da poliamida 12 pela incorporação de carbonato de cálcio nanoparticulado

2020 ◽  
Author(s):  
◽  
R. M. S. Teotonio

Polyamide 12 (PA12) was modified by incorporating calcium carbonate nanoparticles (NPCC) to analyze the effect of the filler content on the mechanical and thermal properties of the final nanocomposites. Compositions containing 0.1, 0.2, 0.5, 1, 5 and 10 wt% of Socal 312 and 10 wt% of Socal U1S2 were analyzed. Furthermore, extruded and non-extruded PA12 were compared. NPCC was characterized through BET analysis (Brunauer, Emmett and Teller), which confirmed that Socal 312 had a specific surface area superior to Socal U1S2. Scanning electron microscopy revealed a tendency of the particles to agglomerate at 1 wt% NPCC and higher. However, all samples showed good distribution of the filler throughout the matrix. Differential Scanning Calorimetry (DSC) analyses did not show differences in the melting temperature of the compositions. Crystallization temperature tends to increase as the amount of filler in the matrix increases. Crystallinity degree showed differences only when comparing extruded and non-extruded PA12, the same occurs with Socal 312 in relation to Socal U1S2 containing 10 wt% of filler. Thermogravimetric analysis (TGA) showed that for contents from 0.5 wt% NPCC, increasing NPCC content reduces the thermal stability of the material. Muffle calcination tests confirmed the residues content obtained with TGA at 5 wt% NPCC higher, and evidenced good distribution of the filler along the specimen. Tensile and flexural strength and tensile and flexural modulus started increasing at 1 wt% NPCC and HDT started increasing at 0.2 wt% NPCC, showing the reinforcing effect of nanofiller and the increase in stiffness of the materials. Impact strength at 23 °C decreased at 0.5 wt% NPCC. Impact strength at -40 °C reduced only with addition of 10 wt% NPCC. Strain at break, toughness and impact strength at 23 °C showed reduction in extruded PA12 when compared to non-extruded PA12, possibly because extrusion favors the increase in crystallinity, as verified in the DSC analysis. Socal U1S2 also showed differences in relation to Socal 312 in strain at break, flexural modulus and HDT, probably due to its lower specific surface area in relation to Socal 312. Therefore, the incorporation of 1 wt% NPCC in PA12, already allows to obtain a nanocomposite with greater mechanical strength compared to neat PA12, which can be a feasible alternative for applications where an increase in mechanical properties is desired

Clay Minerals ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 665-674 ◽  
Author(s):  
Emmanuel Ajenifuja ◽  
Abimbola P.I. Popoola ◽  
Kabir O. Oyedotun ◽  
Olawale Popoola

ABSTRACTKaolin and diatomite are abundant and widely available geological materials that may immobilize or stabilize functional chemical species on their surfaces for various applications. Acid-treated kaolin and diatomite were intercalated with photocatalyst Ag-TiO2nanoparticles using the sol–gel technique to prepare nanocomposite ceramic materials. The nanocomposites were sintered between 900°C and 1000°C to induce thermal reactions and to enhance nanoparticle–substrate attachment. Chemical and thermal characterizations of the acid-treated materials and intercalated nanocomposites were performed with energy-dispersive X-ray (EDX) analysis and differential scanning calorimetry (DSC), respectively. The Brunauer–Emmett–Teller (BET)-specific surface area and scanning electron microscopy (SEM) were employed for physical and microstructural characterization of the nanocomposites, respectively. Morphological studies revealed a uniform distribution of Ag-TiO2nanocrystallites in pores and on mineral particle surfaces. The BET analysis showed remarkable surface and grain modification by sintering. Decreases in the BET-specific surface area were observed for the sintered ceramic nanocomposite, Ag-TiO2-kaolin (20.244 to 5.446 m2/g) and Ag-TiO2-diatomite (19.582 to 10.148 m2/g).


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2517
Author(s):  
Anatoliy Olkhov ◽  
Olga Alexeeva ◽  
Marina Konstantinova ◽  
Vyacheslav Podmasterev ◽  
Polina Tyubaeva ◽  
...  

Biocompatible glycero (9,10-trioxolane) trioleate (ozonide of oleic acid triglyceride, OTOA) was incorporated into polylactic acid (PLA) fibers by electrospinning and nonwoven PLA mats with 1%, 3% and 5% OTOA content. The morphological, mechanical, thermal and water sorption properties of electrospun PLA mats after the addition of OTOA were studied. A morphological analysis showed that the addition of OTOA increased the average fiber diameter and induced the formation of pores on the fiber surface, leading to an increase in the specific surface area for OTOA-modified PLA fibrous mats. PLA fiber mats with 3% OTOA content were characterized by a highly porous surface morphology, an increased specific surface area and high-water sorption. Differential scanning calorimetry (DSC) was used to analyze the thermal properties of the fibrous PLA mats. The glass transition temperatures of the fibers from the PLA–OTOA composites decreased as the OTOA content increased, which was attributed to the plasticizing effect of OTOA. DSC results showed that OTOA aided the PLA amorphization process, thus reducing the crystallinity of the obtained nonwoven PLA–OTOA materials. An analysis of the mechanical properties showed that the tensile strength of electrospun PLA mats was improved by the addition of OTOA. Additionally, fibrous PLA mats with 3% OTOA content showed increased elasticity compared to the pristine PLA material. The obtained porous PLA electrospun fibers with the optimal 3% OTOA content have the potential for various biomedical applications such as drug delivery and in tissue engineering.


2021 ◽  
Author(s):  
Prakash Parajuli ◽  
Sanjit Acharya ◽  
Julia Shamshina ◽  
Noureddine Abidi

Abstract In this study, alkali and alkaline earth metal chlorides with different cationic radii (LiCl, NaCl, and KCl, MgCl2, and CaCl2) were used to gain insight into the behavior of cellulose solutions in the presence of salts. The specific focus of the study was evaluation of the effect of salts’ addition on the sol-gel transition of the cellulose solutions and on their ability to form monoliths, as well as evaluation of the morphology (e.g., specific surface area, pore characteristics, and microstructure) of aerocelluloses prepared from these solutions. The effect of the salt addition on the sol-gel transition of cellulose solutions was studied using rheology, and morphology of resultant aerogels was evaluated by Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis, while the salt influence on the aerocelluloses’ crystalline structure and thermal stability was evaluated using powder X-Ray Diffraction (pXRD) and Thermogravimetric Analysis (TGA), respectively. The study revealed that the effect of salts’ addition was dependent on the component ions and their concentration. The addition of salts in the amount below certain concentration limit significantly improved the ability of the cellulose solutions to form monoliths and reduced the sol-gel transition time. Salts of lower cationic radii had a greater effect on gelation. However, excessive amount of salts resulted in the formation of fragile monoliths or no formation of gels at all. Analysis of surface morphology demonstrated that the addition of salts resulted in a significant increase in porosity and specific surface area, with salts of lower cationic radii leading to aerogels with much larger (~1.5 and 1.6-fold for LiCl and MgCl2, respectively) specific surface area compared to aerocelluloses prepared with no added salt. Thus, by adding the appropriate salt into the cellulose solution prior to gelation, the properties of aerocelluloses that control material’s performance (specific surface area, density, and porosity) could be tailored for a specific application.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1811 ◽  
Author(s):  
Mitja Linec ◽  
Branka Mušič

Global design and manufacturing of the materials with superb properties remain one of the greatest challenges on the market. The future progress is orientated towards researches into the material development for the production of composites of better mechanical properties to the existing materials. In the field of advanced composites, epoxy molding compounds (EMCs) have attained dominance among the common materials due to their excellent properties that can be altered by adding different fillers. One of the main fillers is often based on silicon dioxide (SiO2). The concept of this study was to evaluate the effects of the selected silica-based fillers on the thermal, rheological, and mechanical properties of EMCs. Various types of fillers with SiO2, including crystalline silica and fused silica, were experimentally studied to clarify the impact of filler on final product. Fillers with different shape (scanning electron microscope, SEM), along with different specific surface area (specific surface area analyzer, BET method) and different chemical structure, were tested to explore their modifications on the EMCs. The influence of the fillers on the compound materials was determined with the spiral flow length (spiral flow test, EMMI), glass transition temperature (differential scanning calorimetry, DSC), and the viscosity (Torque Rheometer) of the composites.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350039
Author(s):  
L. G. FURLAN ◽  
RICARDO V. B. OLIVEIRA ◽  
ANDRÉIA C. E. MELLO ◽  
SUSANA A. LIBERMAN ◽  
MAURO A. S. OVIEDO ◽  
...  

The preparation of high-impact polypropylene nanocomposites with different organo-montmorillonite (O-MMT) contents by means of meltprocessing was investigated. The nanocomposite properties were evaluated by transmission electron microscopy (TEM), flexural modulus, izod impact strength, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was noticed that the PP/O-MMT nanocomposites properties were affected by clay content. Exceptional improvements in impact strength were obtained (maximum of 185%) by the use of low O-MMT content. The results showed that higher enhancement on mechanical/thermal properties was obtained by 3 wt.% of O-MMT instead of higher quantities.


2017 ◽  
Vol 19 (2) ◽  
pp. 56-60 ◽  
Author(s):  
Loghman Karimi

Abstract This study presents a facile approach for the preparation of MoS2 nanosheet decorated by porous titanium dioxide with effective photocatalytic activity. Mesoporous titanium dioxide nanostructures first synthesized by a hydrothermal process using titanium (III) chloride and then the MoS2/TiO2 were prepared through mixing of MoS2 nanosheet with mesoporous titanium dioxide under ultrasonic irradiation. The synthesized nanocomposite was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and Brunauer-Emmett-Teller (BET) analysis. The results showed that the nanocomposite has mesoporous structure with specific surface area of 176.4 m2/g and pore diameter of 20 nm. The as-prepared MoS2/TiO2 nanocomposites exhibited outstanding photocatalytic activity for dye degradation under sunlight irradiation, which could be attributed to synergistic effect between the molybdenum disulfide nanosheet and mesoporous titanium dioxide. The photocatalytic performance achieved is about 2.2 times higher than that of mesoporous TiO2 alone. It is believed that the extended light absorption ability and the large specific surface area of the 2D MoS2 nanosheets in the nanocomposite, leading to the enhanced photocatalytic degradation activity.


Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3037 ◽  
Author(s):  
Wang ◽  
Su ◽  
Yu ◽  
Li ◽  
Ma ◽  
...  

We load the natural active molecules onto the spin film in an array using electrospinning techniques. The electrospun active molecular membranes we obtain in optimal parameters exhibit excellent capacity for scavenging radical. The reaction capacity of three different membranes for free radicals are shown as follow, glycyrrhizin acid membrane > quercetin membrane > α-mangostin membrane. The prepared active molecular electrospun membranes with a large specific surface area and high porosity could increase the interaction area between active molecules and free radicals. Additionally, it also has improved anti-airflow impact strength, anti-contaminant air molecular interference ability, and the ability to capture free radicals.


2012 ◽  
Vol 518-523 ◽  
pp. 3053-3056
Author(s):  
Dan Wu ◽  
Xian Peng Zheng ◽  
Yan Li ◽  
Qin Wei

γ-Al2O3 was used as carrier and Fe/γ-Al2O3 catalyst were prepared by wet impregnation and ultrasonic infiltration method and characterized by specific surface area and pore distribution (BET), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and x-ray diffraction (XRD). Specific surface area of Fe/γ-Al2O3 catalyst was 224.93m2/g from BET analysis. Active component of catalyst was attached on the surface of carrier from the characterization of SEM and EDS. The prepared catalyst was used for the catalytic degradation of formaldehyde wastewater. The results indicated that the efficiency of H2O2/Fe/γ-Al2O3 catalytic oxidation was better than Fe/γ-Al2O3 catalytic oxidation and H2O2chemical oxidation.


2017 ◽  
Vol 751 ◽  
pp. 695-700
Author(s):  
Kamonwan Aup-Ngoen ◽  
Mai Noipitak

The preparation of carbon materials from low-cost agricultural residues is presented in this work. Carbon products were prepared from carbonized cassava tuber (cassava tuber char, CTC) using a chemical activation assisted sonochemical process incorporating KOH as an activating agent. The physical properties such as proximate analysis, ultimate analysis and FTIR spectra of raw material were studied using cassava tuber collected from farmland in the Kanchanaburi Province. The structure of the precursor material played a significant role in influencing the quality and properties of the as-prepared carbon. It was found that the specific surface area of carbon products was improved through chemical activation assisted sonochemical process at 80 °C for 4 hours. The influence of KOH impregnation ratios on the specific surface area of the prepared carbon was also investigated in the activation step. Moreover, the properties of cassava tuber-carbon material were characterized by SEM, FTIR, XRD, and multipoint BET analysis. Finally, the application of cassava tuber carbon material as a carbon support for ZnO photocatalyst was investigated by a simple technique.


Author(s):  
Ramesh Vinayagam ◽  
Shraddha Pai ◽  
Thivaharan Varadavenkatesan ◽  
Arivalagan Pugazhendhi ◽  
Raja Selvaraj

AbstractIn the current work, the leaf extract of Bridelia retusa was used for the first time to synthesize zinc oxide nanoparticles (ZnONPs). A zinc nanoparticle-specific 364-nm peak was discerned via UV–Vis studies with a typical bandgap energy of 3.41 eV. FE-SEM micrographs revealed flower-shaped structure of the ZnONPs. EDS analysis corroborated the presence of zinc and oxygen. XRD spectrum established the wurtzite structure, sized at 11.06 nm. The mesoporous texture (4.89 nm) of the nanoparticles was deduced from BET analysis, proving a higher specific surface area than commercial ZnONPs. FTIR spectroscopy resulted in absorption bands typical for ZnONPs. Within a span of 165 min, under solar irradiation, the ZnONPs facilitated the photocatalytic degradation of Rhodamine B dye upto 94.74%. Exhibiting pseudo-first-order kinetics, the process had a degradation constant of 0.0109 min−1. It was concluded that numerous factors led to the high degradation efficiency. High values of bandgap energy and specific surface area, along with the mesoporous and crystalline nature of the ZnONPs led to the observed effect. The ZnONPs were also stabilized by the phytochemicals in the B. retusa leaves. The study is thus able to successfully demonstrate the huge potential in the field of environmental nanoremediation. The viability of using ZnONPs as solar photocatalysts for treating dye-laden industrial wastewater was thus attested.


Sign in / Sign up

Export Citation Format

Share Document