scholarly journals CALCULATION OF STRETCHING AND BENDING STRESS IN A CASING STRING INSTALLED IN A WELL WITH A COMPLEX PROFILE

Author(s):  
I. I. Paliychuk

The casing column in the curvilinear well is represented as a long solid elastic rod. It has a vertically actingweight, which is evenly distributed along the length and creates variable axial tensile forces in the column body. At the same time, it is influenced by the reaction forces of the borehole walls, which, together with the weight, bend the column of initially straight pipes. It is assumed that the casing axis replicates the axis of the bent borehole, and the walls reaction is continuously distributed along the length according to a certain law, which, together with the weight, bends the column of the initially straight pipes. A system of differential equilibrium equations of internal and external forces and moments was composed. This system was supplemented to a closed form with the differential equation of curvature. This system describes large deformations of a long elastic rod in one plane. The introduction of the distributed weight, wall reactions and resistance forces into the calculation makes it non-uniform. Its feature is the need to solve the inverse problem. In this case the external load and rod deformations defined by the well shape in the form of an inclinometric data table are known. The unknown internal forces and the function of the walls reaction which creates its predetermined shape must be determined. It is established that this function depends on the distribution of axial forces caused by weight and resistance forces. As a result the system was reduced to a linear inhomogeneous differential equation with variable coefficients of the first order as to the axialforce and its solution was obtained as a sum of integrals. It is shown that one of them can be found in quadratures only in the case of a constant radius of curvature of the well. This necessitated the use of numerical integration methods. Formulas for the distribution of axial forces and bending moments in the body of the column, as well as the reactions of the walls leading the column to the actual well profile are obtained from the solution of the basic equation. To calculate these force factors, a method for numerical integration of inclinometric measurements data and software for numerical analysis of a real well are developed. This technique allows to detect the areas of local increase of the curvature and difficult passage of the curvilinear wellbore and to calculate the main parameters of the stress-strain state of the casing column in it.

Author(s):  
I. I. Paliichuk

In a curvilinear well, the casing functions as a long continuous rod. It is installed on the supports-centralizers and replicates the complex profile of the well, as a result of which it receives large deformations. To describe them, a system of differential equilibrium equations of internal and external forces and moments was composed, which was supplemented to a closed form with a differential equation of curvature. It is non-uniform, because it takes into account the own distributed weight of the rod. Two ways are proposed to solve the problem: by the method of mathematical compression of the system equations into a complex inhomogeneous differential equation or by projecting the equilibrium equations of forces on the global (vertical-horizontal) and on the local (tangent-normal) coordinate systems. It is shown that the first integral of the system can also be found from the equilibrium equations of a portion of a curved rod of finite length. This integral has the form of a second-order inhomogeneous differential equation with variable coefficients and is the main equation that describes the deformation of a long elastic rod under the action of the longitudinal and transverse components of the forces of distributed weight. The main requirement of the technology is the installation of a pipes column on the centering supports, the purpose of which is to ensure the coaxiality of the pipes and the borehole walls and the creation between them a cement ring of the same thickness and strength. Accounting for this requirement allowed us to linearize the main equation. Its solution is the clue to the formulas of deflections, angular slopes, internal bending moments and transverse forces in the rod with the arbitrary arrangement of supports and boundary conditions in their intersections. The solution of the main differential equation of angular deformations of a long bar is found in the form of a linear combination of Airy and Scorer’s functions and in the form of three linearly independent polynomial series in the sum with a partial solution. The obtained formulas of flexure and power parameters allow us to calculate stress and strain in the pipes column during the process of casing the borehole of an arbitrary profile which increases the reliability and durability of the well.


Author(s):  
Юлия Бондаренко ◽  
Yuliya Bondarenko ◽  
Сергей Ханин ◽  
Sergey Hanin ◽  
Ольга Бестужева ◽  
...  

The article discusses the pin of a ball mill under the action of constant loads of the body with grinding material, the simultaneous action of gravity and rotation due to the moment of external forces. During the operation of a ball mill, a dangerous section of the bottoms is the place where the cylindrical part of the trunnion becomes conical. The stress-strain condition of the ball mill’ pin is estimated on the basis of a mathematical model that includes a complete system of equilibrium equations, defining ratios of elastoplastic deformation. It takes into account the effects of cyclic loading of the material, with the corresponding initial and boundary conditions. The dynamic load that occurs during rotation is taken into account, according to the D'Alembert's principle, which means inertia forces are added to all acting external forces. The bend equation of pin's axle is obtained; it considers the action of inertia forces. The dependences of the deflection, deflection curvature and stress on the longitudinal coordinate under the action of gravity and rotation on the pin’s axle are obtained. The value of the shear stress from the action of torque is determined. The general expression of equivalent stress is examined. It includes the complex stress-strain condition of the ball mill’s pin, which experiences tensile stress from bending loads and shear stress of torque.


1950 ◽  
Vol 1 (4) ◽  
pp. 305-318
Author(s):  
G. N. Ward

SummaryThe approximate supersonic flow past a slender ducted body of revolution having an annular intake is determined by using the Heaviside operational calculus applied to the linearised equation for the velocity potential. It is assumed that the external and internal flows are independent. The pressures on the body are integrated to find the drag, lift and moment coefficients of the external forces. The lift and moment coefficients have the same values as for a slender body of revolution without an intake, but the formula for the drag has extra terms given in equations (32) and (56). Under extra assumptions, the lift force due to the internal pressures is estimated. The results are applicable to propulsive ducts working under the specified condition of no “ spill-over “ at the intake.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 174
Author(s):  
Janez Urevc ◽  
Miroslav Halilovič

In this paper, a new class of Runge–Kutta-type collocation methods for the numerical integration of ordinary differential equations (ODEs) is presented. Its derivation is based on the integral form of the differential equation. The approach enables enhancing the accuracy of the established collocation Runge–Kutta methods while retaining the same number of stages. We demonstrate that, with the proposed approach, the Gauss–Legendre and Lobatto IIIA methods can be derived and that their accuracy can be improved for the same number of method coefficients. We expressed the methods in the form of tables similar to Butcher tableaus. The performance of the new methods is investigated on some well-known stiff, oscillatory, and nonlinear ODEs from the literature.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Ye Ding ◽  
Jinbo Niu ◽  
LiMin Zhu ◽  
Han Ding

A semi-analytical method is presented in this paper for stability analysis of milling with a variable spindle speed (VSS), periodically modulated around a nominal spindle speed. Taking the regenerative effect into account, the dynamics of the VSS milling is governed by a delay-differential equation (DDE) with time-periodic coefficients and a time-varying delay. By reformulating the original DDE in an integral-equation form, one time period is divided into a series of subintervals. With the aid of numerical integrations, the transition matrix over one time period is then obtained to determine the milling stability by using Floquet theory. On this basis, the stability lobes consisting of critical machining parameters can be calculated. Unlike the constant spindle speed (CSS) milling, the time delay for the VSS is determined by an integral transcendental equation which is accurately calculated with an ordinary differential equation (ODE) based method instead of the formerly adopted approximation expressions. The proposed numerical integration method is verified with high computational efficiency and accuracy by comparing with other methods via a two-degree-of-freedom milling example. With the proposed method, this paper details the influence of modulation parameters on stability diagrams for the VSS milling.


2014 ◽  
Vol 1030-1032 ◽  
pp. 223-227
Author(s):  
Lin Fan ◽  
Song Rong Qian ◽  
Teng Fei Ma

In order to analysis the force situation of the material which is discontinuity,we can used the new theory called peridynamics to slove it.Peridynamics theory is a new method of molecular dynamics that develops very quickly.Peridynamics theory used the volume integral equation to constructed the model,used the volume integral equation to calculated the PD force in the horizon.So It doesn’t need to assumed the material’s continuity which must assumed that use partial differential equation to formulates the equation of motion. Destruction and the expend of crack which have been included in the peridynamics’ equation of motion.Do not need other additional conditions.In this paper,we introduce the peridynamics theory modeling method and introduce the relations between peridynamics and classic theory of mechanics.We also introduce the numerical integration method of peridynamics.Finally implementation the numerical integration in prototype microelastic brittle material.Through these work to show the advantage of peridynamics to analysis the force situation of the material.


2011 ◽  
Vol 343-344 ◽  
pp. 661-667 ◽  
Author(s):  
Yun Xue ◽  
De Wei Weng ◽  
Gang Ming Gong

Mechanical model of nucleoside and its equilibrium equations are set up, and the mechanical properties on the equilibrium position are analyzed. In the case constraint force and electrostatic attraction between cylinder OH and elastic rod are balanced, the analytic expression of nutation angle of the section and its conditions of existence are given. It is show that the cylinder OH can maintain equilibrium at any range of the precession angle. In the other case when unbanced, there is phenomenon of separation of elastic rod from cylinder OH in the spiral wound 2 circles, and numerical solution of the precession angle at separation points are calculated. Analysis of equilibrium of cylinder H1 illustrates that the generatrix of cylinder H1 and OH are not parallel, and the angle between them is obtained


1964 ◽  
Vol 4 (04) ◽  
pp. 291-306 ◽  
Author(s):  
C. Kenneth Eilerts

Abstract Finite difference equations were programmed and used to integrate the second-order, second-degree, partial differential equation with variable coefficients that represents the transient linear flow of gas-condensate fluids. Effect was given to the change with pressure of the compressibility factor, the viscosity, and the effective permeability and to change of the absolute permeability with distance. Integrations used as illustrations include recovery of fluid from a reservoir at a constant production rate followed by recovery at a declining rate calculated to maintain a constant pressure at the producing boundary. The time required to attain such a limiting pressure and the fraction of the reserve recovered in that time vary markedly with properties of the fluid represented by the coefficients. Fluid also is returned to the reservoir at a constant rate, until initial formation pressure is attained at the input boundary, and then at a calculated rate that will maintain but not exceed the limiting pressure. The computing programs were used to calculate the results that would be obtained in a series of back-pressure tests made at selected intervals of reservoir depletion. If effect is given to the variations in properties of the fluid that actually occur, then a series of back-pressure curves one for each stage of reserve depletion -- is required to indicate open-flow capacity and related flow characteristics dependably. The isochronal performance method for determining flow characteristics of a well was simulated by computation. Introduction The back-pressure test procedure is based on a derivation of the equation for steady-state radial flow of a gas, the properties of which are of necessity assumed to remain unchanged in applying the test results. The properties of most natural gases being recovered from reservoirs change as the reserve is depleted and pressures decline, and the results of an early back-pressure test may not be dependable for estimating the future delivery capacity of a well. The compressibility factor of a fluid under an initial pressure of 10,000 psia can change 45 per cent and the viscosity can change 70 per cent during the productive life of the reservoir. There are indications that the effective permeability to the flowing fluid can become 50 per cent of the original absolute permeability before enough liquid collects in the structure about a well as pressure declines to permit flow of liquid into the well. The advent of programmed electronic computing made practicable the integration of nonlinear, second-order, partial differential equations pertaining to flow in reservoirs. Aronofsky and Porter represented the compressibility factor and the viscosity by a linear relationship, and integrated the equation for radial flow of gas for pressures up to 1,200 psi. Bruce, Peaceman, Rachford and Rice integrated the partial differential equations for both linear and radial unsteady-state flow of ideal gas in porous media. Their published results were a substantial guide in this study of integration of the partial differential equation of linear flow with coefficients of the equation variable. The computing program was developed to treat effective permeability as being both distance-dependent and pressure-dependent. In this study all examples of effective permeability are assumptions designed primarily to aid in developing programs for giving effect to this and other variable coefficients. The accumulation of data for expressing the pressure dependency of the effective permeability is the objective of a concurrent investigation. SPEJ P. 291^


Author(s):  
E. F. Fichter ◽  
D. R. Kerr

Abstract A walking machine design originating from observations of insects is presented. The primary concept derived from insects is a leg used to apply force to the body without applying significant moments about the point of body attachment. This is accomplished with legs which have kinematic equivalents to ball-and-socket joints at body attachment and ground contact, with joints in the middle which only change distance between body and ground. Standing and walking with 6 legs of this design requires careful attention to static equilibrium equations but does not necessitate a control system which actively distributes forces to the legs. This paper considers necessary observational data, assumptions on which control is based, mathematical development for control and problems such as foot slip.


2021 ◽  
Vol 13 (1) ◽  
pp. 68-77
Author(s):  
Igor Мarmut ◽  
◽  
Andriy Kashkanov ◽  
Vitaliy Kashkanov ◽  
◽  
...  

The article discusses the issues of modeling conditions for obtaining diagnostic information about complex objects. As an example, the study of the braking qualities of four-wheel drive cars on an inertial roller stand is considered. Diagnosing the technical condition of cars from the point of view of traffic safety is one of the most important problems. This is especially important for systems whose technical condition affects traffic safety: especially braking systems. Foreign and domestic experience testifies to the effectiveness of instrumental control. The diagnostic equipment includes roller stands, on which you can check the braking properties of cars. As shown by many studies, in particular, carried out at the Department of Technical Operation and Service of Automobiles, KhNADU (HADI), inertial stands provide more reliable information about the technical condition of the car. Such stands allow you to reproduce the real speed and thermal modes of the brakes (especially those equipped with ABS). To improve the accuracy of diagnosing a car on a roller stand, it is necessary to have an idea of the nature of the interaction of the car wheels with the rollers. The studies of wheel rolling on the stand rollers have been carried out by many authors since the 80s of the last century. However, all these studies were carried out on uniaxial stands and for mono-drive vehicles. Nowadays, a large number of passenger cars have four-wheel drive. Rolling of the wheels of such cars on rollers and their interaction has practically not been studied. Therefore, a return to the study of this issue is relevant. A power model of the system of interaction between the car and the stand has been developed, taking into account the design features of the stand and the design features of the car's suspension. The power model of the system under consideration contains the equilibrium equations of the body and two bridges and the equations of motion of the rollers and wheels of the car. Based on the results of the analysis of the acting forces in the "car-stand" system, the braking moments on the wheels M and the coefficients of the use of the load q during the braking tests of a 4x4 vehicle were determined. The obtained research results allowed to improve the theory of interaction of a car wheel with the rollers of an inertial diagnostic stand.


Sign in / Sign up

Export Citation Format

Share Document