scholarly journals The Tale of CHD4 in DNA Damage Response and Chemotherapeutic Response

2019 ◽  
Vol 3 (1) ◽  
pp. 01-03
Author(s):  
Shiaw-Yih Lin ◽  
Jing Zhang ◽  
David J.H. Shih

The chromatin remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex. Due to its important role in DNA damage repair, CHD4 has been identified as a key determinant in cancer progression, stem cell differentiation, and T cell and B cell development. Accumulating evidence has revealed that CHD4 can function in NuRD dependent and independent manner in response to DNA damage. Mutations of CHD4 have been shown to diminish its functions, which indicates that interpretation of its mutations may provide tangible benefit for patients. The expression of CHD4 play a dual role in sensitizing cancer cells to chemotherapeutic agents, which provides new insights into the contribution of CHD4 to tumor biology and new therapeutic avenues.

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2848
Author(s):  
Nicole A. Wilkinson ◽  
Katherine S. Mnuskin ◽  
Nicholas W. Ashton ◽  
Roger Woodgate

Many endogenous and exogenous factors can induce genomic instability in human cells, in the form of DNA damage and mutations, that predispose them to cancer development. Normal cells rely on DNA damage bypass pathways such as translesion synthesis (TLS) and template switching (TS) to replicate past lesions that might otherwise result in prolonged replication stress and lethal double-strand breaks (DSBs). However, due to the lower fidelity of the specialized polymerases involved in TLS, the activation and suppression of these pathways must be tightly regulated by post-translational modifications such as ubiquitination in order to limit the risk of mutagenesis. Many cancer cells rely on the deregulation of DNA damage bypass to promote carcinogenesis and tumor formation, often giving them heightened resistance to DNA damage from chemotherapeutic agents. In this review, we discuss the key functions of ubiquitin and ubiquitin-like proteins in regulating DNA damage bypass in human cells, and highlight ways in which these processes are both deregulated in cancer progression and might be targeted in cancer therapy.


2019 ◽  
Vol 93 (22) ◽  
Author(s):  
Samuel G. Salamun ◽  
Justine Sitz ◽  
Carlos F. De La Cruz-Herrera ◽  
Jaime Yockteng-Melgar ◽  
Edyta Marcon ◽  
...  

ABSTRACT The BMRF1 protein of Epstein-Barr virus (EBV) has multiple roles in viral lytic infection, including serving as the DNA polymerase processivity factor, activating transcription from several EBV promoters and inhibiting the host DNA damage response to double-stranded DNA breaks (DSBs). Using affinity purification coupled to mass spectrometry, we identified the nucleosome remodeling and deacetylation (NuRD) complex as the top interactor of BMRF1. We further found that NuRD components localize with BMRF1 at viral replication compartments and that this interaction occurs through the BMRF1 C-terminal region previously shown to mediate transcriptional activation. We identified an RBBP4 binding motif within this region that can interact with both RBBP4 and MTA2 components of the NuRD complex and showed that point mutation of this motif abrogates NuRD binding as well as the ability of BMRF1 to activate transcription from the BDLF3 and BLLF1 EBV promoters. In addition to its role in transcriptional regulation, NuRD has been shown to contribute to DSB signaling in enabling recruitment of RNF168 ubiquitin ligase and subsequent ubiquitylation at the break. We showed that BMRF1 inhibited RNF168 recruitment and ubiquitylation at DSBs and that this inhibition was at least partly relieved by loss of the NuRD interaction. The results reveal a mechanism by which BMRF1 activates transcription and inhibits DSB signaling and a novel role for NuRD in transcriptional activation in EBV. IMPORTANCE The Epstein-Barr virus (EBV) BMRF1 protein is critical for EBV infection, playing key roles in viral genome replication, activation of EBV genes, and inhibition of host DNA damage responses (DDRs). Here we show that BMRF1 targets the cellular nucleosome remodeling and deacetylation (NuRD) complex, using a motif in the BMRF1 transcriptional activation sequence. Mutation of this motif disrupts the ability of BMRF1 to activate transcription and interfere with DDRs, showing the importance of the NuRD interaction for BMRF1 functions. BMRF1 was shown to act at the same step in the DDR as NuRD, suggesting that it interferes with NuRD function.


Oncogene ◽  
2016 ◽  
Vol 35 (45) ◽  
pp. 5905-5915 ◽  
Author(s):  
M Y Shah ◽  
E Martinez-Garcia ◽  
J M Phillip ◽  
A B Chambliss ◽  
R Popovic ◽  
...  

2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 418-418
Author(s):  
Jingyuan Wang ◽  
Joanne Xiu ◽  
Yasmine Baca ◽  
Richard M. Goldberg ◽  
Philip Agop Philip ◽  
...  

418 Background: Alteration of histone modifications participating in transcription and genomic instability, has been recognized as an important role in tumorigenesis. Aberrant expression of histone-lysine N-methyltransferase 2 ( KMT2) family, which methylate histone H3 on lysine 4, is significantly correlated with poor survival in GC. Understanding how gene mutations of KMT2 family interact to affect cancer progression could lead to new treatment strategies. Methods: A total of 1,245 GC were analyzed using next-generation sequencing (NGS) and immunohistochemistry (IHC; Caris Life Sciences, Phoenix, AZ). Tumor mutational burden (TMB) was calculated based on somatic nonsynonymous mutations, and MSI status was evaluated by a combination of IHC, fragment analysis and NGS. PD-L1 status was analyzed by IHC (SP142). Gene fusions were detected by Archer (N = 59) or whole-transcriptome sequencing (N = 129). Results: The overall mutation rate of genes in KMT2 family was 10.6% ( KMT2A: 1.7 %, KMT2C: 4.7%, KMT2D: 7.1%). Overall, the mutation rates were significantly higher in KMT2-mutated (MT) GC than KMT2-wild type (WT) GC, except for TP53 (43% vs 63%, p < .0001). Interestingly, among the genes with significant higher mutation rates in KMT2-MT GC, 28% (21/76) of them were related to DNA damage repair (including BRCA1/ 2, RAD50) and 33% (25/76) of them were related to chromatin remodeling (including ARID1A/ 2, SMARCA4). Overexpression of HER2, amplifications of KRAS, CDK6 and HER2 were significant lower, while PCM1 and BCL3 amplifications were significant higher in KMT2-MT, compared to KMT2-WT GC ( p < .05). Significantly higher prevalence of TMB-high ( > 17mut/MB) (49% vs 3%), MSI-H (53% vs 2%), and PD-L1 overexpression (20% vs 7%) were present in KMT2-MT GC, compared to KMT2-WT GC ( p < .001). The rates of fusions involving ARHGAP26 (19% vs 3%, p < .01)and RELA (29% vs 0%, p < .0001) were significantly higher in KMT2-MT than those in KMT2-WT GC. Conclusions: This is the largest study to investigate the distinct genomic landscape between KMT2-MT and WT GC. Our data indicates that KMT2-MT GC patients could potentially benefit from agents targeting DNA damage repair and immunotherapy, which warrants further in-vitro and in-vivo investigation.


2006 ◽  
Vol 26 (4) ◽  
pp. 1398-1413 ◽  
Author(s):  
Gang Liu ◽  
Xinbin Chen

ABSTRACT DNA polymerase η (PolH) is the product of the xeroderma pigmentosum variant (XPV) gene and a well-characterized Y-family DNA polymerase for translesion synthesis. Cells derived from XPV patients are unable to faithfully bypass UV photoproducts and DNA adducts and thus acquire genetic mutations. Here, we found that PolH can be up-regulated by DNA breaks induced by ionizing radiation or chemotherapeutic agents, and knockdown of PolH gives cells resistance to apoptosis induced by DNA breaks in multiple cell lines and cell types in a p53-dependent manner. To explore the underlying mechanism, we examined p53 activation upon DNA breaks and found that p53 activation is impaired in PolH knockdown cells and PolH-null primary fibroblasts. Importantly, reconstitution of PolH into PolH knockdown cells restores p53 activation. Moreover, we provide evidence that, upon DNA breaks, PolH is partially colocalized with phosphorylated ATM at γ-H2AX foci and knockdown of PolH impairs ATM to phosphorylate Chk2 and p53. However, upon DNA damage by UV, PolH knockdown cells exhibit two opposing temporal responses: at the early stage, knockdown of PolH suppresses p53 activation and gives cells resistance to UV-induced apoptosis in a p53-dependent manner; at the late stage, knockdown of PolH suppresses DNA repair, leading to sustained activation of p53 and increased susceptibility to apoptosis in both a p53-dependent and a p53-independent manner. Taken together, we found that PolH has a novel role in the DNA damage checkpoint and that a p53 target can modulate the DNA damage response and subsequently regulate p53 activation.


2011 ◽  
Vol 5 ◽  
pp. BCBCR.S8184 ◽  
Author(s):  
Apichart Atipairin ◽  
Adisorn Ratanaphan

BRCA1 is a tumor suppressor protein involved in maintaining genomic integrity through multiple functions in DNA damage repair, transcriptional regulation, cell cycle checkpoint, and protein ubiquitination. The BRCA1-BARD1 RING complex has an E3 ubiquitin ligase function that plays essential roles in response to DNA damage repair. BRCA1-associated cancers have been shown to confer a hypersensitivity to chemotherapeutic agents. Here, we have studied the functional consequence of the in vitro E3 ubiquitin ligase activity and cisplatin sensitivity of the missense mutation D67Y BRCA1 RING domain. The D67Y BRCA1 RING domain protein exhibited the reduced ubiquitination function, and was more susceptible to the drug than the D67E or wild-type BRCA1 RING domain protein. This evidence emphasized the potential of using the BRCA1 dysfunction as an important determinant of chemotherapy responses in breast cancer.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 1390-1390
Author(s):  
Ritika Dutta ◽  
Bruce Tiu ◽  
Arya Kaul ◽  
Bryan Mitton ◽  
Kathleen M. Sakamoto

Abstract CREB (cAMP Response Element Binding Protein) is a nuclear transcription factor that plays a critical role in regulating myeloid cell proliferation and differentiation. CREB is overexpressed in Acute Myeloid Leukemia (AML) cells from the majority of AML patients at diagnosis, and CREB overexpression is associated with a poor prognosis.Transgenic mice overexpressing CREB in myeloid cells develop myelodysplasia/myeloproliferative neoplasms. CREB also cooperates with other oncogenes, such as Sox4, to induce transformation to AML. Knockdown of CREB inhibits AML proliferation but does not affect normal hematopoietic stem cell activity, establishing the crucial role of CREB in AML cell growth and survival. In vitro, CREB overexpression leads to increased resistance to apoptosis in AML cells. Thus, we hypothesized that increased CREB expression confers chemoresistance, as this may represent one reason that patients with high CREB levels have worse prognoses and relapse following therapy. Previous studies have demonstrated that chemotherapy resistance can result from increased DNA damage repair activity, but CREB has never been implicated in these DNA damage repair processes, nor has CREB even been described as an important transcriptional regulator of DNA damage repair genes. The goal of this study was to characterize whether CREB expression confers chemoresistance through regulation of DNA repair genes in AML cells. Firstly, we established that CREB expression levels correlate with chemoresistance by treating KG-1 cells engineered to express lower and higher levels of CREB with etoposide and doxorubicin, both chemotherapy drugs used to treat AML. Cells with CREB overexpression had increased viability compared to CREB knockdown cells after treatment with both chemotherapies at a range of concentrations. To investigate the underlying mechanism, we performed CREB chromatin immunoprecipitation and RNA-seq following small molecule CREB inhibition to identify the sets of genes that are regulated by CREB in AML cells and whose expression levels are sensitive to CREB inhibition. Out of 88 DNA damage repair genes found to be CREB-bound, 41 exhibited at least a 2-fold change in expression after CREB inhibition. qPCR was performed to determine whether the expression of DNA damage repair genes were proportional to CREB levels. Transcription of ATM, ATR, RAD54L, and RAD51, genes important in sensing and repairing DNA damage, were coordinately regulated with CREB expression. ATM, ATR, RAD54L, and RAD51 were reduced by approximately 42.0%±0.1%, 44.8%±0.1%, 40.2%±0.1%, and 27.9%±0.1% respectively in CREB knockdown cells (p≤0.05). Reduced expression of these genes also had a functional consequence. CREB knockdown cells initiated a lesser DNA damage repair response in response to etoposide treatment, as determined by measured phospho-H2AX levels, compared to wild-type CREB-expressing cells. Conversely, cells with CREB overexpression exhibited the strongest DNA damage repair response following etoposide treatment. Taken together, these data demonstrate that CREB overexpression has a protective effect against DNA damage and confers chemoresistance, likely through upregulation of DNA damage repair genes. Future studies will seek to determine if small molecule inhibition of CREB can reduce the transcription of DNA damage repair genes and thus sensitize AML cells to chemotherapeutic agents. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Xian Lin ◽  
Feng Wang ◽  
Jing Liu ◽  
Yibin Lin ◽  
Li Li ◽  
...  

Abstract Background Stemness and chemoresistance contribute to cervical cancer recurrence and metastasis. It is meaningful to develop alternative targets for eliminating cancer stem cells (CSCs) properties, suppressing metastasis, and alleviating chemoresistance in cervical cancer. This study clarifies the role of CENPK in cervical cancer stemness and chemoresistance and its clinical significance in cancer progression. Methods Human cervical cancer cell lines, xenografts, and clinical samples were used for expression and functional analysis. CENPK expression in cervical cancer was analyzed by bioinformatics based on a microarray and TCGA database and immunohistochemistry based on 119 paraffin-embedded cervical cancer specimens and 35 paraffin-embedded adjacent normal tissues in a tissue chip. Results CENPK served as an oncogene by promoting CSCs properties, DNA damage repair, epithelial-mesenchymal transition and DNA replication, thus inducing cisplatin/carboplatin resistance, cell metastasis and proliferation in cervical cancer. Intriguingly, targeting CENPK markedly prolonged the survival time of cervical cancer-bearing mice, and improved chemotherapy sensitivity of cervical cancer cells in vivo. CENPK also interacted with tumor suppressor gene SOX6 to activate Wnt signaling and inactivate p53 signaling. CENPK modulated expression of key regulators in CSCs properties, DNA damage repair, epithelial-mesenchymal transition and DNA replication by disrupting SOX6-β-catenin interaction, promoting β-catenin expression and nuclear translocation, and facilitating SOX6-mediated p53 ubiquitination and nuclear export, thus stimulating cervical cancer stemness, chemoresistance, metastasis and proliferation by. Interestingly, the RAD21/SMC3 complex, downstream targets of β-catenin, enhanced CENPK transcription to form a positive regulatory circuit through Wnt signaling. Facilitation of Wnt signaling by iRhom2 further activated the CENPK/SOX6-β-catenin-RAD21/SMC3 loop and conferred cervical cancer progression, suggesting a Wnt-p53 pathway crosstalk. Importantly, CENPK was upregulated in cervical cancer, correlated with cancer recurrence, and independently predicted poor patient prognosis. Conclusions This work identifies CENPK as a prognostic indicator and highlights targeting of CENPK as a novel strategy in the treatment of cervical cancer.


2018 ◽  
Author(s):  
Nofar Mor ◽  
Yoach Rais ◽  
Shani Peles ◽  
Daoud Sheban ◽  
Alejandro Aguilera-Castrejon ◽  
...  

AbstractThe Nucleosome Remodeling and Deacytelase (NuRD) complex is a co-repressive complex involved in many pathological and physiological processes in the cell. Previous studies have identified one of its components, Mbd3, as a potent inhibitor for reprogramming of somatic cells to pluripotency. Following OSKM induction, early and partial depletion of Mbd3 protein followed by applying naïve ground-state pluripotency conditions, results in a highly efficient and near-deterministic generation of mouse iPS cells. Increasing evidence indicates that the NuRD complex assumes multiple mutually exclusive protein complexes, and it remains unclear whether the deterministic iPSC phenotype is the result of a specific NuRD sub complex. Since complete ablation of Mbd3 blocks somatic cell proliferation, here we aimed to identify alternative ways to block Mbd3-dependent NuRD activity by identifying additional functionally relevant components of the Mbd3/NuRD complex during early stages of reprogramming. We identified Gatad2a (also known as P66α), a relatively uncharacterized NuRD-specific subunit, whose complete deletion does not impact somatic cell proliferation, yet specifically disrupts Mbd3/NuRD repressive activity on the pluripotency circuit during both stem cell differentiation and reprogramming to pluripotency. Complete ablation of Gatad2a in somatic cells, but not Gatad2b, results in a deterministic naïve iPSC reprogramming where up to 100% of donor somatic cells successfully complete the process within 8 days. Genetic and biochemical analysis established a distinct sub-complex within the NuRD complex (Gatad2a-Chd4-Mbd3) as the functional and biochemical axis blocking reestablishment of murine naïve pluripotency. Disassembly of this axis by depletion of Gatad2a, results in resistance to conditions promoting exit of naïve pluripotency and delays differentiation. We further highlight context- and posttranslational dependent modifications of the NuRD complex affecting its interactions and assembly in different cell states. Collectively, our work unveils the distinct functionality, composition and interactions of Gatad2a-Chd4-Mbd3/NuRD subcomplex during the resolution and establishment of mouse naïve pluripotency.


2021 ◽  
Author(s):  
Usama Khamis Hussein ◽  
Asmaa Gamal Ahmed ◽  
Yiping Song ◽  
See-Hyoung Park ◽  
Kyoung Min Kim ◽  
...  

Abstract BackgroundCK2α/CSNK2A1 is involved in cancer progression by phosphorylating various signaling molecules. Considering the role of CSNK2A1 in cancer progression and phosphorylation of SIRT6 and the role of SIRT6 in chemoresistance through the DNA damage repair pathway, CSNK2A1 and SIRT6 might be involved in resistance to the conventional anti-cancer therapies.MethodsWe evaluated the expression of CSNK2A1 in the 37 osteosarcoma patients and investigated the effects of CSNK2A1 and phosphorylation of SIRT6 on Ser338 on the resistance to the anti-cancer effects of doxorubicin. Results Higher expression of CSNK2A1 predicted shorter overall survival and relapse-free survival in both general osteosarcoma patients and sub-population of patients who received postoperative chemotherapies. U2OS and KHOS/NP osteosarcoma cells with induced overexpression of CSNK2A1 were resistant to cytotoxic effects of doxorubicin, and knock-down of CSNK2A1 potentiated the cytotoxic effects of doxorubicin. CSNK2A1 overexpression-mediated resistance to doxorubicin was associated with SIRT6 phosphorylation and induction of the DNA damage repair pathway molecules ATM and Chk2. CSNK2A1 and SIRT6 mediated resistance to doxorubicin in vivo was attenuated via mutation of SIRT6 at the Ser338 phosphorylation site. Emodin, a CSNK2A1 inhibitor, potentiated the cytotoxic effects of doxorubicin in osteosarcoma cells in vitro. ConclusionsThis study demonstrates that the expression of CSNK2A1 might be used as a prognostic indicator of osteosarcoma. In addition, it suggests that CSNK2A1 induces resistance to doxorubicin through phosphorylation of SIRT6-mediated activation of the DNA damage repair pathway. Therefore, blocking the CSNK2A1-SIRT6-DNA damage repair pathway might be a new therapeutic stratagem for the poor prognostic subgroup of osteosarcomas with high expression of CSNK2A1.


Sign in / Sign up

Export Citation Format

Share Document