scholarly journals EXPERIMENTAL STUDIES OF THE INFLUENCE OF WAVES ON THE BREAKWATER OF A PARTIAL VERTICAL PROFILE

Author(s):  
R.V. Synytsia ◽  

Abstract. The article is devoted to the issues of physical experimental researches connected with the determination of the parameters of wave quenching when overflowing them through the superstructure of enclosing hydraulic structures (ENS) of incomplete vertical profile. The research was conducted in the hydrowave laboratory of the Department of Hydraulic Engineering of the Odessa State Academy of Civil Engineering and Architecture. The article presents partial results of experiments performed on ENS of incomplete vertical profile. The models were made on a geometric scale and were subjected to wave effects similar to the conditions of the natural section of the coast of the Odessa Bay in compliance with the criteria of similarity. The construction of new structures of enclosing hydraulic structures requires careful primary experimental research. These researches mostly often carried out on physical models in specialized hydrowave laboratories, allow to get rid of risks of financial losses at the wrong choice of types and elements of the designed objects. The carried out researches allow estimating with a high degree of reliability, according to scale conditions, physics of the processes proceeding on models which will also be observed at the operation of real construction. The physics of the process of hydrodynamic impact on hydraulic structures is often difficult to describe only with the help of a mathematical model, which confirms the high degree of importance of physical experiments. The progress of technical science largely depends on the ability to make more accurate measurements. High-precision measuring equipment was used in laboratory tests. This paper describes the method of conducting experiments that were performed on one physical model, under three different conditions of the location of the superstructure relative to the quiet level, as well as different values of the initial wave heights. The use of structures of incomplete vertical profile, in order to protect the waters of seaports, as well as elements of the coastal infrastructure of maritime cities will increase economic attractiveness by reducing financial costs, thanks to the reduction of the topside of the enclosing structures.

2021 ◽  
Vol 13 (24) ◽  
pp. 13612
Author(s):  
Katarzyna Zielonko-Jung ◽  
Marta Poćwierz ◽  
Robert Idem

This paper addresses wind conditions in urban building development at the pedestrian level. The article aimed to identify aerodynamic phenomena around three types of multi-family housing developments with different forms and the same urban parameters of building development density (high density was taken into account). The aim of the research was mainly to achieve qualitative results that would lead to understanding fundamental processes and phenomena. Wind tunnel experimental studies were conducted on physical models at a scale of 1: 400 using visualization and erosion methods. These experiments yielded data regarding the arrangement of airflow directions and changes in airflow velocity, expressed as the amplification coefficient (α), the occurrence of which was caused by the presence of buildings. An analysis was conducted concerning wind conditions that constitute pedestrian comfort and influence the possibility for ventilation of spaces between buildings for the three selected models. The research results were compared, and an attempt was made to assess the most beneficial and the least favorable building development types in this respect.


Author(s):  
O. Yu. Kichigina

At production of stainless steel expensive alloying elements, containing nickel, are used. To decrease the steel cost, substitution of nickel during steel alloying process by its oxides is an actual task. Results of analysis of thermodynamic and experimental studies of nickel reducing from its oxide presented, as well as methods of nickel oxide obtaining at manganese bearing complex raw materials enrichment and practice of its application during steel alloying. Technology of comprehensive processing of complex manganese-containing raw materials considered, including leaching and selective extraction out of the solution valuable components: manganese, nickel, iron, cobalt and copper. Based on theoretical and experiment studies, a possibility of substitution of metal nickel by concentrates, obtained as a result of hydrometallurgical enrichment, was confirmed. Optimal technological parameters, ensuring high degree of nickel recovery out of the initial raw materials were determined. It was established, that for direct steel alloying it is reasonable to add into the charge pellets, consisting of nickel concentrate and coke fines, that enables to reach the through nickel recovery at a level of 90%. The proposed method of alloying steel by nickel gives a possibility to decrease considerably steel cost at the expense of application of nickel concentrate, obtained out of tails of hydrometallurgical enrichment of manganese-bearing raw materials, which is much cheaper comparing with the metal nickel.


2021 ◽  
Vol 410 ◽  
pp. 287-292
Author(s):  
Anatolij A. Babenko ◽  
Leonid A. Smirnov ◽  
Alena G. Upolovnikova

The equilibrium interfacial distribution of sulfur and boron was estimated using the HSC 6.1 Chemistry software package (Outokumpu) and the simplex-lattice planning method. Adequate mathematical models have been constructed in the form of III degree polynomial, which describe the effect of the composition of the studied oxide system on the equilibrium distribution of sulfur and boron between the slag and the metal. Generalization of the results of experimental studies and thermodynamic modeling made it possible to obtain new data on the influence of the basicity and content of B2O3 in the slag of the CaO-SiO2-B2O3-MgO-Al2O3 system on the interphase distribution of sulfur and boron. It was found that in the range of boron oxide concentration of 1.0-10%, an increase in slag basicity from 2 to 5 at 1600°C leads to an increase in the sulfur distribution coefficient from 1 to 20 and, as a consequence, a decrease in the sulfur content in the metal from 0.02 to 0.0014 %, i.e. an increase in slag basicity favorably affects the development of the metal desulfurization process. An increase in the B2O3 content from 2.0 to 10.0% in slags formed in the region of moderate basicity, not exceeding 2-3, is accompanied at 1600°C by a decrease in the boron interphase distribution coefficient from 450 to 150 and an increase in the boron concentration in the metal from 0.006 to 0.021 %, which indicates the progress of boron reduction from slag to metal. The shift of the formed slags to the area of ​​increased basicity up to 5.0 shows a high degree of boron reduction from slag to metal. The results of the laboratory experiment confirmed the results of thermodynamic modeling.


2021 ◽  
pp. 38-55
Author(s):  
A. V. Vlasenko ◽  
E. A. Evdokimov ◽  
E. P. Rodionov

The paper summarizes data on modern approaches to the diagnosis, prevention and treatment of severe acute parenchymal respiratory failure of various origins, including ARDS due to bacterial viral pneumonia. The work is based on the data of modern well-organized studies, analysis of international clinical guidelines with a high degree of evidence, as well as the results of our own long-term experimental studies and clinical observations of the treatment of patients with ARDS of various origins, including viral pneumonia of 2009, 2016, 2020. Scientifically grounded algorithms for prevention, differential diagnosis and personalized therapy of severe acute respiratory failure using innovative medical technologies and a wide range of respiratory and adjuvant treatment methods have been formulated. The authors tried to adapt as much as possible the existing current recommendations for the daily clinical practice of anesthesiologists and resuscitators.


Author(s):  
C. Stuart Daw ◽  
K. Dean Edwards ◽  
Robert M. Wagner ◽  
Johney B. Green

Spark assist appears to offer considerable potential for increasing the speed and load range over which homogeneous charge compression ignition (HCCI) is possible in gasoline engines. Numerous experimental studies of the transition between conventional spark-ignited (SI) propagating-flame combustion and HCCI combustion in gasoline engines with spark assist have demonstrated a high degree of deterministic coupling between successive combustion events. Analysis of this coupling suggests that the transition between SI and HCCI can be described as a sequence of bifurcations in a low-dimensional dynamic map. In this paper, we describe methods for utilizing the deterministic relationship between cycles to extract global kinetic rate parameters that can be used to discriminate multiple distinct combustion states and develop a more quantitative understanding of the SI-HCCI transition. We demonstrate the application of these methods for indolene-containing fuels and point out an apparent HCCI mode switching not previously reported. Our results have specific implications for developing dynamic combustion models and feedback control strategies that utilize spark assist to expand the operating range of HCCI combustion.


Author(s):  
И.Е. Кажекин

В работе рассмотрены вопросы безопасности бортовых электросетей объектов морской индустрии, показано влияние перенапряжений на их основные показатели, которыми определяются опасности смертельных электротравм, опасности возникновения пожаров и взрывов. Представлены результаты математического моделирования электрического разряда по уравнению Майра с учетом особенностей переходного процесса при однофазных замыканиях на корпус. Показана роль напряжения смещения нейтрали по постоянному потенциалу, наибольшие значения которого формируются при неустойчивом контакте фазы с корпусом судна. Описаны результаты экспериментальных исследований переходных процессов, сопровождающихся возникновением неустойчивыми искровыми разрядами. Сравнение результатов расчета по предложенной методике с результатами физических экспериментов показало весьма удовлетворительную сходимость. Предложенная модель может быть использована для уточнения показателей, характеризующих безопасность судовых электросетей. The paper deals with the safety issues of on-board power grids of the marine industry facilities, shows the influence of overvoltages on their main indicators, which determine the dangers of fatal electrical injuries, the risk of fires and explosions. The results of mathematical modeling of an electric discharge according to the Mayr equation, taking into account the features of the transient process in single-phase short circuits to the case, are presented. The role of the bias voltage of the neutral at a constant potential is shown, the highest values ​​of which are formed during unstable contact of the phase with the ship's hull. The results of experimental studies of transient processes accompanied by the appearance of unstable spark discharges are described. Comparison of the calculation results by the proposed method with the results of physical experiments showed a very satisfactory convergence. The proposed model can be used to refine the indicators characterizing the safety of ship power grids.


2020 ◽  
Vol 157 ◽  
pp. 02005
Author(s):  
Aleksei Balabukha ◽  
Valentina Zvereva

The authors of the article have developed the computer application allows to determine the value of the friction coefficient λ and anti-turbulent additives efficiency with a high degree of accuracy. The program can be used in the calculations and design of oil pipelines. The paper presents experimental studies of the effect anti-turbulent additives on the magnitude of pressure losses during fluid movement through pipes. The data gained by the developed computer program has been proved by the data of practical application of additives in the real oil pipeline transportation system called Eastern Siberia-Pacific Ocean oil pipeline.


2015 ◽  
Vol 733 ◽  
pp. 599-602
Author(s):  
Lei Cao ◽  
Guo Chang Zhao ◽  
Li Ping Song ◽  
Tian Dong Lu

Flat grooved heat pipes, which are especially useful in obtaining a high degree of temperature uniformity on flat surfaces, have been successfully used in the temperature control of electronic systems, however, the mechanisms governing the flow and heat transfer of this kind of heat pipes are still under scrutiny as some reported results cannot be reproduced by others or some assumptions have been proven to be unreasonable or ideal. The theoretical and experimental studies on flat grooved heat pipes and introduce work performed on modeling flat grooved heat pipes are reviewed in this paper.


Author(s):  
Manases Tello Ruiz ◽  
Marc Mansuy ◽  
Luca Donatini ◽  
Jose Villagomez ◽  
Guillaume Delefortrie ◽  
...  

Abstract The influence of waves on ship behaviour can lead to hazardous scenarios which put at risk the ship, the crew and the surroundings. For this reason, investigating the effect of waves on manoeuvring is of relevant interest. Waves may impair the overall manoeuvring performance of ships hence increasing risks such as collisions, which are of critical importance when considering dense traffic around harbour entrances and in unsheltered access channels. These are conditions met by Ultra Large Container Ships (ULCS) when approaching a port, e.g. in the North Sea access channels to the main sea ports of Belgium. Note that due to the large draft of ULCS and the limited water depth, shallow water effects will also influenced the ship. Thus, in such scenarios the combined effects of shallow water and waves on the ship’s manoeuvring need to be studied. The present work investigates the effect of waves on the turning ability of an ULCS in shallow water. Simulations are carried out using the two time scale approach. The restricted water depth corresponds to 50% Under Keel Clearance (UKC). To gain a better insight on the forces acting on the ship, the propulsion, and the rudder behaviour in waves experimental studies were conducted. These tests were carried out in the Towing Tank for Manoeuvres in Confined Water at Flanders Hydraulics Research (in co-operation with Ghent University) with a scale model of an ULCS. Different wave lengths, wave amplitudes, ships speeds, propeller rates, and rudder angles were tested. The turning ability characteristics obtained from simulations in waves and calm water are presented, and discussed.


2020 ◽  
pp. 44-53 ◽  
Author(s):  
V. E. Makhov ◽  
A. V. Emelyanov ◽  
A. I. Potapov ◽  
V. M. Petrushenko

Measuring systems using the design of laser module beams on the surface of the object under study are considered. A technique is proposed for experimental studies of the brightness structure of the study of laser modules for their subsequent testing. Adaptive algorithms for determining the type of module and distance have been developed for determining the coordinates of light marks on the surface of controlled products, ensuring the accuracy and reliability of the measurement. The need for high-precision measuring systems to carry out their preliminary selection and calibration of laser modules according to the proposed method, taking into account the range of design of light marks, is shown. It is shown in the work that the accuracy of determining the relative coordinates in the trajectory of the light marks of laser modules at a distance of 5 m for plain surfaces of the observed objects can be several times higher (0,2…0,3 mm) of the accuracy of determining their absolute coordinates (»1 mm).


Sign in / Sign up

Export Citation Format

Share Document