scholarly journals Analysis of Seismic Resistance of Large-Sized Electrical Equipment by the Method of Computational Analysis

2021 ◽  
Vol 21 (2) ◽  
pp. 17-27
Author(s):  
A. S. Koshmak ◽  
◽  
V. B. Krytskyi ◽  
V. O. Kurov ◽  
Y. O. Oborskyi ◽  
...  

In the framework of this article, the problem of confirming the seismic resistance of large-sized electrical equipment is raised using the example of large asynchronous electric motors. The analysis of regulatory documents for the assessment of the seismic resistance of such equipment showed that confirmation of seismic resistance should be performed by an experimental method and other methods can be applied only with sufficient justification of the correct functioning of products. At the same time, rather stringent requirements are established for the test conditions, which in many cases are rather difficult to implement or cannot be met at all. The analysis of the possibility of testing the ASVO 15-23-34M1 electric motor, which is used as fan drives for seismic resistance by an experimental method, under the conditions of specialized organizations accredited in Ukraine, has been carried out. It was found that the existing test installations, due to their characteristics of carrying capacity, cannot be used to carry out tests for seismic resistance of electric motors weighing more than 600 kg. Considering the above, we can conclude that the justification of the seismic resistance of such equipment by experimental methods in Ukraine today is impossible. The analysis of current standards and special normative documents for seismic testing has been carried out. In these documents, clarifications are established on the separation of electrical equipment according to their design features, which make it possible to confirm the seismic resistance of certain groups of equipment by calculation methods. The requirements for the assessment of seismic resistance by the computational method and the evaluation criteria are established. The main purpose of such an assessment is to confirm that the engine retains its structural integrity and performance during and after the passage of seismic action. An assessment of the seismic resistance of the ASVO 15–23–34M1 electric motor was carried out by the method of computational analysis using the method of limiting seismic resistance. A finite element model of an electric motor has been built taking into account all the necessary operational and seismic loads. Strength analysis was carried out using the APM Structure 3D code. Taking into account the results of the performed calculations, it can be concluded that the seismic resistance of the engine during an earthquake with an intensity of up to 8 points according to the DSTU BV.1.1–28:2010 scale is confirmed. The engine withstands seismic loads and remains operational during and after the passage of an earthquake. The minimum value of the ultimate seismic resistance of the engine is determined by the seismic resistance of the stator HCLPF = 0.142 g. Based on the results of the analyses carried out, it can be concluded that the use of the computational method for assessing the seismic resistance of large-sized electrical equipment does not contradict the requirements of the current regulatory documents and can be used as a replacement for the experimental method in cases where tests are impossible or impractical. Modern computer simulation and calculation technologies allow for a comprehensive assessment of the equipment seismic resistance and obtain high reliability results.

Author(s):  
Dmitry M. Zhemchugov-Gitman ◽  
Lyubov V. Mozzhukhina ◽  
Alexander M. Uzdin

The question of setting the seismic design input on high rise buildings is considered. The existing approaches to accounting for increased responsibility of high rise buildings in Russia are described. The proposal to reduce the probability of an acceptable building failure in proportion to the number of floors and Guideline proposals to increase the reliability factor and using maps of general seismic zoning are analyzed. The main disadvantages of methods described are indicated. It is shown that the current regulatory documents in the field of earthquake engineering do not provide the same reliability of designed structures in general and high-rise buildings in particular. The influence of seismic dangers in according with seismic zoning maps on the reliability of the designed objects is noted. An approach to generating the design input based on the permissible probability of its exceeding is considered using the example of five five-storey buildings and one 25-storey buildings. The probability of the admissible damage value included in the normative calculations is estimated. An estimate of the allowable failure probability on the value of acceptable damage (risk) is proposed under the assumption of a normal distribution of damage caused by earthquake. It is shown that the allowable failure probability decreases with decreasing acceptable damage only in the area of small damages. An approach to the assignment of seismic action based on an assessment of seismic risk has been formulated. The system of design coefficients used to calculate seismic loads on high-rise buildings is analyzed. It is noted that along with an increase in the design level of seismic acceleration, it is necessary to increase the coefficient, taking into account the low damping of high-rise buildings oscillations. At the same time, it is possible to significantly reduce the reduction coefficient by regulating the strains between the building floors.


Author(s):  
Konstantin Iegupov ◽  
Sergey Rudenko ◽  
Oleksiy Nemchuk

The article deals with marine hydraulic structures design and operation, considering the influence of various superstructures and reloading equipment. The analysis of seismic resistance of the hydraulic structures erected in the seismic regions of Ukraine has shown that the actual seismic loads on the structures significantly exceed the design loads being determined by regulatory documents prior to 2006. In the era of globalization, transformation of cargo flows, changes in their structure, the issue of ports planning development, implying port capacities balanced development, namely: sea zone port zone, and land zone development, becomes particularly important. The design of hydrotechnical structures should be carried considering the transshipment complexes at the quay with proper scientific support.


2020 ◽  
pp. 47-52
Author(s):  
A.A. Mahov ◽  
O.G. Dragina ◽  
P.S. Belov ◽  
S.L. Mahov

The possibility of using linear feed drives along the X and the Y axes in the portal-milling machining center is shown. The calculations of force indicators of drives, feed drives of traverse and carriage for two modes, as well as the selection of Siemens linear motors are given. Keywords milling machining center, drive, feed, linear electric motor. [email protected]


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1738
Author(s):  
Vanessa Neves Höpner ◽  
Volmir Eugênio Wilhelm

The use of static frequency converters, which have a high switching frequency, generates voltage pulses with a high rate of change over time. In combination with cable and motor impedance, this generates repetitive overvoltage at the motor terminals, influencing the occurrence of partial discharges between conductors, causing degradation of the insulation of electric motors. Understanding the effects resulting from the frequency converter–electric motor interaction is essential for developing and implementing insulation systems with characteristics that support the most diverse applications, have an operating life under economically viable conditions, and promote energy efficiency. With this objective, a search was carried out in three recognized databases. Duplicate articles were eliminated, resulting in 1069 articles, which were systematically categorized and reviewed, resulting in 481 articles discussing the causes of degradation in the insulation of electric motors powered by frequency converters. A bibliographic portfolio was built and evaluated, with 230 articles that present results on the factors that can be used in estimating the life span of electric motor insulation. In this structure, the historical evolution of the collected information, the authors who conducted the most research on the theme, and the relevance of the knowledge presented in the works were considered.


2021 ◽  
pp. 50-60
Author(s):  
A.A. Antsifirov ◽  
V.A. Krivoshein

The research presented in the article is devoted to the selection of the electric motor of the hydraulic press drive with a nominal force of 5MN. The article presents the main characteristics and the description of the press operation using the means of mechanization of the technological process of pressure treatment. Using the Deform-3D software package, the process of stamping the crosspiece of the ZIL-130 cardan shaft was simulated. Based on the presented hydraulic scheme of the press, its topological model was formed in the PA-9 software package. The deformation force obtained in the course of modeling the technological process of stamping was used in the topological model of the press. Using a tabular cyclogram, the sequence of actuation of the end switches and hydraulic distributors during the stamping process is shown. In the article, two variants of engine operation were analyzed. Based on the results of the conducted research, it is necessary to focus on the second version of the 55 kW engine, the operation of which will provide the required characteristics of the hydraulic drive of the press, which in turn will allow for technological stamping operations. The simulation tools allow providing estimated information when selecting the necessary tools to ensure the optimal characteristics of hydraulic press drives. The article considered the variation of electric motors that differ from each other in nominal characteristics, with constant characteristics of the pump. For more accurate estimates of energy savings during the operation of the hydraulic drive, it is necessary to vary the characteristics of the pump in the simulation, and the best option is to form an experiment planning matrix when combining the characteristics of the electric motor and the hydraulic pump. This approach ultimately allows forming a function for which one can select a hydraulic drive from existing brands of electric motors and hydraulic pumps for presses of the corresponding range of nominal force.


2018 ◽  
Vol 882 ◽  
pp. 64-74 ◽  
Author(s):  
Andreas Mayr ◽  
Michael Weigelt ◽  
Michael Masuch ◽  
Martin Adrion ◽  
Aljoscha Bauer ◽  
...  

There are numerous levers and constraints affecting the sustainability of electric motors. While previous work mostly focuses on individual energy and resource efficiency potentials within single phases of the motor’s lifecycle, this paper summarizes sustainability aspects from three different perspectives, namely from the market, product and process view. The first part of this paper analyzes the electric motor market to emphasize the significance of this industry and to outline the importance of state-regulated efficiency classes. The second part provides an overview of the range of electric motor types and their sustainability characteristics. The third part contains an analysis of manufacturing processes in terms of energy and resource efficiency by pointing out appropriate key figures and optimization approaches. In doing so, the connection of the three perspectives market, product and processes offers a holistic view on sustainability aspects of electric motors.


Author(s):  
Dmitry Shprekher ◽  
◽  
Gennady Babokin ◽  
Evgeny Kolesnikov ◽  
Dmitry Ovsyannikov ◽  
...  

The article analyzes the uneven loading of the scraper conveyor electric motors. The most common type of multi-motor conveyor is considered here: two-drive, with head and end drives connected through gearboxes and sprockets by an endless chain with scrapers. The simulation results are presented for three variants of com-binations of parameters of electric drives. It has been established that the use of a two-motor variable frequen-cy drive of a scraper conveyor powered by a single frequency converter inevitably entails uneven loading of the electric motors of the head and end drives. To eliminate this disadvantage, it is proposed to supply each electric motor from its own frequency converter. A system of automatic load balancing is proposed. The implementation and the result of the work of the load balancing system are carried out on a model in the Matlab / Simulink system.


2018 ◽  
Vol 251 ◽  
pp. 04032
Author(s):  
Dmitriy Sidorov ◽  
Vladimir Dorozhinskiy

Nowadays, reinforced concrete structures are most often used as load-bearing elements of buildings and structures. In the case of alternating loads such as seismic action, there is accumulation of residual plastic deformations in the concrete structures, which leads to a significant complication in the calculation of structures by “standard” methods. For such problems, it is advisable to use computational complexes in which mathematical models of structural materials are implemented, which allow to describe the work of concrete and reinforcing bars for various types of impacts more properly. However, when applying such methods, the results obtained should not contradict the requirements of the existing regulatory documents, which, in the first place, the structural engineer should be guided by. Before solving more complex problems, the applied methods should be verified and analyzed for fairly simple structures and types of loads.


2019 ◽  
Vol 124 ◽  
pp. 02003
Author(s):  
V. A. Trushkin ◽  
O. N. Churlyaeva ◽  
R. V. Kozichev

The article provides an analysis of the properties of the working environment of submersible electrical equipment. The influence of the operating parameters of electrical equipment on the physical properties of the fluid (its electrically conductive properties) is considered. Mathematical confirmation of the implementation of electroosmosis in the capillaries of the insulation of submersible electric motors is given. The rationale for the active method of protecting submersible electrical equipment from reducing insulation resistance and preventing electrical breakdown is given.


Sign in / Sign up

Export Citation Format

Share Document