Part 5. How to insonate cultured cells in vitro

Choonpa Igaku ◽  
2017 ◽  
Vol 44 (2) ◽  
pp. 153-155
Author(s):  
Takashi KONDO ◽  
Nobuki KUDO
Keyword(s):  
Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
N.K.R. Smith ◽  
K.E. Hunter ◽  
P. Mobley ◽  
L.P. Felpel

Electron probe energy dispersive x-ray microanalysis (XRMA) offers a powerful tool for the determination of intracellular elemental content of biological tissue. However, preparation of the tissue specimen , particularly excitable central nervous system (CNS) tissue , for XRMA is rather difficult, as dissection of a sample from the intact organism frequently results in artefacts in elemental distribution. To circumvent the problems inherent in the in vivo preparation, we turned to an in vitro preparation of astrocytes grown in tissue culture. However, preparations of in vitro samples offer a new and unique set of problems. Generally, cultured cells, growing in monolayer, must be harvested by either mechanical or enzymatic procedures, resulting in variable degrees of damage to the cells and compromised intracel1ular elemental distribution. The ultimate objective is to process and analyze unperturbed cells. With the objective of sparing others from some of the same efforts, we are reporting the considerable difficulties we have encountered in attempting to prepare astrocytes for XRMA.Tissue cultures of astrocytes from newborn C57 mice or Sprague Dawley rats were prepared and cultured by standard techniques, usually in T25 flasks, except as noted differently on Cytodex beads or on gelatin. After different preparative procedures, all samples were frozen on brass pins in liquid propane, stored in liquid nitrogen, cryosectioned (0.1 μm), freeze dried, and microanalyzed as previously reported.


1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S27-S40 ◽  
Author(s):  
T. Kobayashi ◽  
T. Kigawa ◽  
M. Mizuno ◽  
T. Watanabe

ABSTRACT There are several in vitro methods to analyse the function of the adenohypophysis or the mechanisms of its regulation. The present paper deals with single cell culture, organ culture and short term incubation techniques by which the morphology and gonadotrophin-secreting function of the adenohypophysis were studied. In trypsin-dispersed cell culture, the adenohypophysial cells showed extensive propagation to form numerous cell colonies and finally develop into a confluent monolayer cell sheet covering completely the surface of culture vessels. Almost all of the cultured cells, however, became chromophobic, at least at the end of the first week of cultivation, when gonadotrophin was detectable neither in the culture medium nor in the cells themselves. After the addition of the hypothalamic extract, gonadotrophin became detectable again, and basophilic or PAS-positive granules also reappeared within the cells, suggesting that the gonadotrophs were stimulated by the extract to produce gonadotrophin. In organ culture and short term incubation, the incorporation of [3H] leucine into the adenohypophysial cells in relation to the addition of hypothalamic extract was examined. It was obvious that the ability to incorporate [3H] leucine into the gonadotrophs in vitro was highly dependent upon the presence of the hypothalamic extract.


2019 ◽  
Vol 19 (8) ◽  
pp. 631-640 ◽  
Author(s):  
Omel Baneen Qallandar ◽  
Faeza Ebrahimi ◽  
Farhadul Islam ◽  
Riajul Wahab ◽  
Bin Qiao ◽  
...  

Background: Co-culture of cancer cells with alveolar bone cells could modulate bone invasion and destructions. However, the mechanisms of interaction between oral squamous cell carcinoma (OSCC) and bone cells remain unclear. Objective: The aim of this study is to analyse the direct and indirect effects of OSCC cells in the stimulation of osteolytic activity and bone invasion. Methods: Direct co-culture was achieved by culturing OSCC (TCA8113) with a primary alveolar bone cell line. In the indirect co-culture, the supernatant of TCA8113 cells was collected to culture the alveolar bone cells. To assess the bone invasion properties, in vitro assays were performed. Results: The proliferation of co-cultured cancer cells was significantly (p<0.05) higher in comparison to the monolayer control cells. However, the proliferation rates were not significantly different between direct and indirect co-cultured cells with indirect co-cultured cells proliferated slightly more than the direct co-cultured cells. Invasion and migration capacities of co-cultured OSCC and alveolar bone cells enhanced significantly (p<0.05) when compared to that of control monolayer counterparts. Most importantly, we noted that OSCC cells directly co-cultured with alveolar bone cells stimulated pronounced bone collagen destruction. In addition, stem cells and epithelialmesenchymal transition markers have shown significant changes in their expression in co-cultured cells. Conclusion: In conclusion, the findings of this study highlight the importance of the interaction of alveolar bone cells and OSCC cells in co-culture setting in the pathogenesis of bone invasion. This may help in the development of potential future biotherapies for bone invasion in OSCC.


Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2116
Author(s):  
Xiaoyong Wang ◽  
Lijuan Zhang ◽  
Qi Dai ◽  
Hongzong Si ◽  
Longyun Zhang ◽  
...  

The high concentrations of individual phytochemicals in vitro studies cannot be physiologically achieved in humans. Our solution for this concentration gap between in vitro and human studies is to combine two or more phytochemicals. We screened 12 phytochemicals by pairwise combining two compounds at a low level to select combinations exerting the synergistic inhibitory effect of breast cancer cell proliferation. A novel combination of luteolin at 30 μM (LUT30) and indole-3-carbinol 40 μM (I3C40) identified that this combination (L30I40) synergistically constrains ERα+ breast cancer cell (MCF7 and T47D) proliferation only, but not triple-negative breast cancer cells. At the same time, the individual LUT30 and I3C40 do not have this anti-proliferative effect in ERα+ breast cancer cells. Moreover, this combination L30I40 does not have toxicity on endothelial cells compared to the current commercial drugs. Similarly, the combination of LUT and I3C (LUT10 mg + I3C10 mg/kg/day) (IP injection) synergistically suppresses tumor growth in MCF7 cells-derived xenograft mice, but the individual LUT (10 mg/kg/day) and I3C (20 mg/kg/day) do not show an inhibitory effect. This combination synergistically downregulates two major therapeutic targets ERα and cyclin dependent kinase (CDK) 4/6/retinoblastoma (Rb) pathway, both in cultured cells and xenograft tumors. These results provide a solid foundation that a combination of LUT and I3C may be a practical approach to treat ERα+ breast cancer cells after clinical trials.


1992 ◽  
Vol 20 (1) ◽  
pp. 138-143
Author(s):  
Maria Carrara ◽  
Lorenzo Cima ◽  
Roberto Cerini ◽  
Maurizio Dalle Carbonare

A method has been developed whereby cosmetic products which are not soluble in water or in alcohol can be brought into contact with cell cultures by being placed in a cell culture insert, which is then placed in the cell culture well. Preliminary experiments were carried out with L929 cells, and cytotoxicity was evaluated by measuring neutral red uptake and the total protein content of treated cultured cells. Encouraging results were obtained in comparisons of three cosmetic emulsions and of one emulsion containing a range of concentrations of two preservatives, Kathon CG and Bronopol.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii214-ii214
Author(s):  
Jenna Minami ◽  
Nicholas Bayley ◽  
Christopher Tse ◽  
Henan Zhu ◽  
Danielle Morrow ◽  
...  

Abstract Metabolic reprogramming is a hallmark of cancer, and malignant cells must acquire metabolic adaptations to fuel neoplastic progression. Mutations or changes in metabolic gene expression can impose nutrient dependencies in tumors, and even in the absence of metabolic defects, cancer cells can become auxotrophic for particular nutrients or metabolic byproducts generated by other cells in the tumor microenvironment (TME). Conventional cell lines do not recapitulate the metabolic heterogeneity of glioblastoma (GBM), while primary cultured cells do not account for the influences of the microenvironment and the blood brain barrier on tumor biology. Additionally, these systems are under strong selective pressure divergent from that in vivo, leading to reduced heterogeneity between cultured tumor cells. Here, we describe a biobank of direct-from-patient derived orthotopic xenografts (GliomaPDOX) and gliomaspheres that reveal a subset of gliomas that, while able to form in vivo, cannot survive in vitro. RNA sequencing of tumors that can form both in vivo and in vitro (termed “TME-Indifferent”) compared to that of tumors that can only form in vivo (termed “TME-Dependent”) revealed transcriptional changes associated with altered nutrient availability, emphasizing the unique metabolic programs impacted by the tumor microenvironment. Furthermore, TME-dependent tumors lack metabolic signatures associated with nutrient biosynthesis, thus indicating a potential dependency of these tumors on scavenging specific nutrients from the extracellular milieu. Collectively, these data emphasize the metabolic heterogeneity within GBM, and reveal a subset of gliomas that lack metabolic plasticity, indicating a potential brain-microenvironment specific metabolic dependency that can be targeted for therapy.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 765
Author(s):  
Qianbin Zhao ◽  
Tim Cole ◽  
Yuxin Zhang ◽  
Shi-Yang Tang

Organ-on-a-chip (OOC) uses the microfluidic 3D cell culture principle to reproduce organ- or tissue-level functionality at a small scale instead of replicating the entire human organ. This provides an alternative to animal models for drug development and environmental toxicology screening. In addition to the biomimetic 3D microarchitecture and cell–cell interactions, it has been demonstrated that mechanical stimuli such as shear stress and mechanical strain significantly influence cell behavior and their response to pharmaceuticals. Microfluidics is capable of precisely manipulating the fluid of a microenvironment within a 3D cell culture platform. As a result, many OOC prototypes leverage microfluidic technology to reproduce the mechanically dynamic microenvironment on-chip and achieve enhanced in vitro functional organ models. Unlike shear stress that can be readily generated and precisely controlled using commercial pumping systems, dynamic systems for generating proper levels of mechanical strains are more complicated, and often require miniaturization and specialized designs. As such, this review proposes to summarize innovative microfluidic OOC platforms utilizing mechanical actuators that induce deflection of cultured cells/tissues for replicating the dynamic microenvironment of human organs.


Blood ◽  
1989 ◽  
Vol 73 (7) ◽  
pp. 1836-1841 ◽  
Author(s):  
M Kobayashi ◽  
BH Van Leeuwen ◽  
S Elsbury ◽  
ME Martinson ◽  
IG Young ◽  
...  

Abstract Human bone marrow cells cultured for 21 days in the presence of recombinant human interleukin-3 (IL-3) produced up to 28 times more colony-forming cells (CFC) than could be obtained from cultures stimulated with granulocyte colony stimulating factor (G-CSF) or granulocyte-macrophage CSF (GM-CSF). IL-3-cultured cells retained a multipotent response to IL-3 in colony assays but were restricted to formation of granulocyte colonies in G-CSF and granulocyte or macrophage colonies in GM-CSF. Culture of bone marrow cells in IL-3 also led to accumulation of large numbers of eosinophils and basophils. These data contrast with the effects of G-CSF, GM-CSF, and IL-3 in seven-day cultures. Here both GM-CSF and IL-3 amplified total CFC that had similar multipotential colony-forming capability in either factor. G-CSF, on the other hand, depleted IL-3-responsive colony-forming cells dramatically, apparently by causing these cells to mature into granulocytes. The data suggest that a large proportion of IL-3- responsive cells in human bone marrow express receptors for G-CSF and can respond to this factor, the majority becoming neutrophils. Furthermore, the CFC maintained for 21 days in IL-3 may be a functionally distinct population from that produced after seven days culture of bone marrow cells in either IL-3 or GM-CSF.


Author(s):  
Laia Tolosa ◽  
Teresa Martínez-Sena ◽  
Johannes P. Schimming ◽  
Erika Moro ◽  
Sylvia E. Escher ◽  
...  

AbstractPhenols are regarded as highly toxic chemicals. Their effects are difficult to study in in vitro systems because of their ambiguous fate (degradation, auto-oxidation and volatility). In the course of in vitro studies of a series of redox-cycling phenols, we found evidences of cross-contamination in several in vitro high-throughput test systems, in particular by trimethylbenzene-1, 4-diol/trimethylhydroquinone (TMHQ) and 2,6-di-tertbutyl-4-ethylphenol (DTBEP), and investigated in detail the physicochemical basis for such phenomenon and how to prevent it. TMHQ has fast degradation kinetics followed by significant diffusion rates of the resulting quinone to adjacent wells, other degradation products being able to air-diffuse as well. DTBEP showed lower degradation kinetics, but a higher diffusion rate. In both cases the in vitro toxicity was underestimated because of a decrease in concentration, in addition to cross-contamination to neighbouring wells. We identified four degradation products for TMHQ and five for DTBEP indicating that the current effects measured on cells are not only attributable to the parent phenolic compound. To overcome these drawbacks, we investigated in detail the physicochemical changes occurring in the course of the incubation and made use of gas-permeable and non-permeable plastic seals to prevent it. Diffusion was greatly prevented by the use of both plastic seals, as revealed by GC–MS analysis. Gas non-permeable plastic seals, reduced to a minimum compounds diffusion as well oxidation and did not affect the biological performance of cultured cells. Hence, no toxicological cross-contamination was observed in neighbouring wells, thus allowing a more reliable in vitro assessment of phenol-induced toxicity.


Sign in / Sign up

Export Citation Format

Share Document