scholarly journals Effective chemical methods of fire control: new threats and new solutions

Author(s):  
S. D. Varfoloveev ◽  
S. M. Lomakin ◽  
P. A. Sakharov ◽  
A. V. Khvatov

This paper discusses the prospective flame retardant systems for polymeric materials, while considering the environmental issues they create. Polymer nanocomposites with carbon nano-additives and layered silicates are presented as a new type of flame retardant system which exhibits a synergistic effect flame retardancy for traditional polymer thermoplasts. Particular attention is paid to the novel intumescent flame retardants based on the oxidized renewable raw materials, which can be successfully used in the manufacture of multi-purpose timber construction and polymer materials.

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Irina N. Vikhareva ◽  
Evgeniya A. Buylova ◽  
Gulnara U. Yarmuhametova ◽  
Guliya K. Aminova ◽  
Aliya K. Mazitova

Plastic is one of the most demanded materials on the planet, and the increasing consumption of which contributes to the accumulation of significant amounts of waste based on it. For this reason, a new approach to the development of these materials has been formed: the production of polymers with constant operational characteristics during the period of consumption and capable of then being destroyed under the influence of environmental factors and being involved in the metabolic processes of natural biosystems. The paper outlines the prerequisites for the development of the field of creating biodegradable composite materials, as well as the main technical solutions for obtaining such polymeric materials. The main current solutions for reducing and regulating the degradation time of polymer materials are presented. The most promising ways of further development of the field of bioplastics production are described. Common types of polymers based on renewable raw materials, composites with their use, and modified materials from natural and synthetic polymers are considered.


Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2534 ◽  
Author(s):  
Kunpeng Song ◽  
Yinjie Wang ◽  
Fang Ruan ◽  
Weiwei Yang ◽  
Jiping Liu

Derivatives of 3,9-dichloro-2,4,8,10-tetraoxa-3,9-diphosphaspiro-[5,5]undecane-3,9-dioxide (SPDPC) are of increasing interest as flame retardants for polymeric materials. In addition, SPDPC is also an important intermediate for the preparation of intumescent flame retardants (IFRs). However, low efficiency and undesirable dispersion are two major problems that seriously restrain the application of IFRs as appropriate flame retardants for polymer materials. Usually, the functionalization or modification of SPDPC is crucial to acquiring high-performance polymer composites. Here, a small molecule spirocyclic flame retardant diphenylimidazole spirocyclic pentaerythritol bisphosphonate (PIPC) was successfully prepared through the substitution reaction between previously synthesized intermediate SPDPC and 2-phenylimidazole (PIM). Phenyl group and imidazole group were uniformly anchored on the molecular structure of SPDPC. This kind of more uniform distribution of flame retardant groups within the epoxy matrix resulted in a synergistic flame retardant effect and enhanced the strength of char layers to the epoxy composites, when compared to the unmodified epoxy. The sample reached a limiting oxygen index (LOI) of 29.7% and passed with a V-0 rating in the UL 94 test with the incorporation of only 5 wt% of as-prepared flame retardant PIPC. Moreover, its peak of heat release rate (pHRR) and total heat release (THR) decreased by 41.15% and 21.64% in a cone calorimeter test, respectively. Furthermore, the addition of PIPC has only slightly impacted the mechanical properties of epoxy composites with a low loading.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 540
Author(s):  
Yukyung Kim ◽  
Sanghyuck Lee ◽  
Hyeonseok Yoon

Currently, polymers are competing with metals and ceramics to realize various material characteristics, including mechanical and electrical properties. However, most polymers consist of organic matter, making them vulnerable to flames and high-temperature conditions. In addition, the combustion of polymers consisting of different types of organic matter results in various gaseous hazards. Therefore, to minimize the fire damage, there has been a significant demand for developing polymers that are fire resistant or flame retardant. From this viewpoint, it is crucial to design and synthesize thermally stable polymers that are less likely to decompose into combustible gaseous species under high-temperature conditions. Flame retardants can also be introduced to further reinforce the fire performance of polymers. In this review, the combustion process of organic matter, types of flame retardants, and common flammability testing methods are reviewed. Furthermore, the latest research trends in the use of versatile nanofillers to enhance the fire performance of polymeric materials are discussed with an emphasis on their underlying action, advantages, and disadvantages.


2017 ◽  
Vol 52 (10) ◽  
pp. 1295-1303 ◽  
Author(s):  
Yijiao Xue ◽  
Mingxia Shen ◽  
Fengling Lu ◽  
Yongqin Han ◽  
Shaohua Zeng ◽  
...  

To improve the flame resistance of polystyrene, three kinds of organophilic heterionic montmorillonites (Na-montmorillonite, Ca-montmorillonite, and Fe-montmorillonite) reinforced polystyrene nanocomposites were prepared by melt dispersion method. The structure and composition of the organo montmorillonites were characterized by using X-ray diffraction and Fourier-transform infrared analysis. The adhesion between organo montmorillonites and polystyrene was investigated by scanning electron microscopy. The flame resistance and thermal stability of the polystyrene/organo montmorillonites were evaluated by cone calorimeter test and thermogravimetric analysis. The interlayer space of organo montmorillonites increased with the increase of the oxidation state of the cations. With the addition of organo montmorillonites, the peak values of all the flame resistance indexes of the polystyrene/organo montmorillonites nanocomposites decreased, among which the PHRR values have decreased the most, compared with those of polystyrene. Their corresponding test times have all been delayed following almost precisely the same trend. Therefore, their flame retardant ability come from their lamellated structures, their charring forming abilities, and the reducing power of Fe3+ in polystyrene/Fe-montmorillonite. Organo montmorillonites mainly act as a kind of intumescent flame retardants. The flame resistance of polystyrene/Na-montmorillonite nanocomposite was the best, and the polystyrene/Ca-montmorillonite came second, which is slightly better than that of polystyrene/Fe-montmorillonite.


2015 ◽  
Vol 30 (6) ◽  
pp. 816-826 ◽  
Author(s):  
Yiren Huang ◽  
Jianwei Yang ◽  
Zhengzhou Wang

Flame-retardant properties of ammonium polyphosphate (APP) and its two microcapsules, APP with a shell of melamine–formaldehyde (MF) resin (MFAPP) and APP with a shell of epoxy resin (EPAPP), were studied in styrene–butadiene–styrene (SBS). The results indicate that APP after the microencapsulation leads to an increase in limiting oxygen index in SBS compared with APP. When dipentaerythritol is incorporated into the SBS composites containing the APP microcapsules, a further improvement in flame retardancy of the composites is observed. The microencapsulation does not result in much improvement of mechanical properties. Moreover, the effect of a compatibilizer (SBS grafted with maleic anhydride) on flame-retardant and mechanical properties of SBS/APP composites was investigated.


2019 ◽  
Vol 2019 ◽  
pp. 1-25 ◽  
Author(s):  
Shaolin Lu ◽  
Wei Hong ◽  
Xudong Chen

Polymer materials are ubiquitous in daily life. While polymers are often convenient and helpful, their properties often obscure the fire hazards they may pose. Therefore, it is of great significance in terms of safety to study the flame retardant properties of polymers while still maintaining their optimal performance. Current literature shows that although traditional flame retardants can satisfy the requirements of polymer flame retardancy, due to increases in product requirements in industry, including requirements for durability, mechanical properties, and environmental friendliness, it is imperative to develop a new generation of flame retardants. In recent years, the preparation of modified two-dimensional nanomaterials as flame retardants has attracted wide attention in the field. Due to their unique layered structures, two-dimensional nanomaterials can generally improve the mechanical properties of polymers via uniform dispersion, and they can form effective physical barriers in a matrix to improve the thermal stability of polymers. For polymer applications in specialized fields, different two-dimensional nanomaterials have potential conductivity, high thermal conductivity, catalytic activity, and antiultraviolet abilities, which can meet the flame retardant requirements of polymers and allow their use in specific applications. In this review, the current research status of two-dimensional nanomaterials as flame retardants is discussed, as well as a mechanism of how they can be applied for reducing the flammability of polymers.


Materials ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5253
Author(s):  
Anna Sienkiewicz ◽  
Piotr Czub

Due to the thermal and fire sensitivity of polymer bio-composite materials, especially in the case of plant-based fillers applied for them, next to intensive research on the better mechanical performance of composites, it is extremely important to improve their reaction to fire. This is necessary due to the current widespread practical use of bio-based composites. The first part of this work relates to an overview of the most commonly used techniques and different approaches towards the increasing the fire resistance of petrochemical-based polymeric materials. The next few sections present commonly used methods of reducing the flammability of polymers and characterize the most frequently used compounds. It is highlighted that despite adverse health effects in animals and humans, some of mentioned fire retardants (such as halogenated organic derivatives e.g., hexabromocyclododecane, polybrominated diphenyl ether) are unfortunately also still in use, even for bio-composite materials. The most recent studies related to the development of the flame retardation of polymeric materials are then summarized. Particular attention is paid to the issue of flame retardation of bio-based polymer composites and the specifics of reducing the flammability of these materials. Strategies for retarding composites are discussed on examples of particular bio-polymers (such as: polylactide, polyhydroxyalkanoates or polyamide-11), as well as polymers obtained on the basis of natural raw materials (e.g., bio-based polyurethanes or bio-based epoxies). The advantages and disadvantages of these strategies, as well as the flame retardants used in them, are highlighted.


2011 ◽  
Vol 415-417 ◽  
pp. 424-428 ◽  
Author(s):  
Xiang Zhang ◽  
Fan Zhang

A novel phosphor-nitrogen intumescent flame retardant was prepared by dry method (without adding any solvent) using H3PO4, P2O5, pentaerythritol and melamine as raw materials. IR analysis found that the synthetic flame retardants had the P=O and P-O-C double-ring structures, the same to phosphate ester melamine salts. The reaction temperature, time and the ratio of raw materials had significant effect on the esterification reaction. The esterification reaction temperature should be controlled between 120°C and 130°C, and the reaction time should be 2.5 hours. The conversion rate of esterification could be improved by adding P2O5 to the reaction, and preferential mole rate between H3PO4 and P2O5 should be 2:1. Thermogravimetric analysis showed that the starting decomposition temperature of the flame retardant was 190°C, and at 700°C, the residual char rate was about 30%. The expansion ratio of the flame retardant after heated was about 30 to 50 times, SEM analysis found that the exteral surface of the expansion char layer was continuous and smooth, and the interior of the expansion char layer was uniformly porous structures, and the aperture size was about 150-200 μm, such porous structures could provide better adiabatic effect.


2014 ◽  
Vol 881-883 ◽  
pp. 863-866
Author(s):  
Chao Peng ◽  
Shi Bin Nie ◽  
Lei Liu ◽  
Qi Lin He ◽  
Yuan Hu ◽  
...  

Nanoporous nickel phosphates (VSB-1) was synthesized by hydrothermal method. Then VSB-1 was added to the ammonium polyphosphate and pentaerythritol system in polypropylene (PP) matrix.The synergistic effect of VSB-1 with intumescent flame retardants (IFR) was studied by cone calorimetry test. The results of cone calorimetry show that heat release rate peak (pHRR) and total heat release (THR) of intumescent flame retardant PP with 2wt% VSB-1 decrease remarkably compared with that of without VSB-1. The pHRR and THR decrease respectively from 1140 to 286.0 kW/m2, and from 96.0 to 63.2 MJ/m2.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chuanhua Gao ◽  
Siqi Huo ◽  
Zhenhu Cao

It has been significant yet challenging to recycle and reuse different kinds of wastes because of their mass production within society. Many efforts have been conducted to reuse wastes in different fields. Interestingly, some wastes have been employed to replace traditional petroleum-based flame retardants for polymeric materials. This review focuses on the recent development of waste flame retardants and their impacts on thermal stability, flame retardancy, and smoke suppression of polymers, followed by representative flame-retardant mechanisms. Finally, the key challenges associated with waste flame retardants are presented, and some future perspectives are proposed.


Sign in / Sign up

Export Citation Format

Share Document