scholarly journals Microstructural Features and Wear Characteristics of Semi-Solid Processed A356 Aluminum Alloy

Author(s):  
K. Raju ◽  
N. Gopi Krishna ◽  
L. Sankara Rao ◽  
S. N.Ojha

In the present study the microstructural features and tribological characteristics of hot forged A356 Al alloy subjected to SIMA (Strain induced melt activation) and T6 heat treatment (semi-solid) processes have been investigated. The SIMA process consists of hot forging of alloy at 325˚C followed by cold forging at room temperature, isothermal holding at 580˚C for 10 min and quenching. In case of T6 heat treatment, the hot forged alloy was solution treated at 540˚C for 4 hours followed by quenching in cold water and artificial aging at 155˚C for 3 hours. The microstructure of the alloy exhibited a spherical or globular morphology of the primary α-phase with uniform distribution of solutes in the interdendritic region. A detailed analysis of the solidification behaviour of the melt from semi-solid region of the alloy is reported. The reasons for the consequential changes in tribological properties of A356 Al alloy processed by SIMA andT6 heat treatment have been clearly brought out.

2020 ◽  
Vol 991 ◽  
pp. 86-93
Author(s):  
Priyo Tri Iswanto ◽  
Akhyar Hasan ◽  
Aditya Janata ◽  
Luthfi Muhammad Mauludin ◽  
Hizba Muhammad Sadida

Fatigue behavior of A356 aluminum alloy for motorcycle rim was experimentally investigated based on T6 heat treatment and artificial aging. The high speed of 1,100 rpm from centrifugal casting was used in this study. The pouring temperature at 750 °C was employed and the preheated temperature at 250 °C was applied on the mold. The solution heat treatment of the sample was conducted for 4 hours at 540 o C before it immersed into the water for rapid cooling at room temperature. This step followed by natural aging treatment at 30 °C and artificial aging treatment at 150 °C, 175 °C, and 200 °C for 2 hours, respectively. It is found that increasing centrifugal casting speed into 1,100 rpm combined with heat treatment and artificial aging temperature can significantly increase not only its mechanical properties but also the fatigue life of motorcycle wheel made of A356 aluminum alloy. This experiment proved that the lowest fatigue crack growth rate obtained with this method was at temperature of 175°C.


2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


2012 ◽  
Vol 463-464 ◽  
pp. 494-498
Author(s):  
Su Qiu Jia ◽  
Yun Hai Ma ◽  
Jin Tong ◽  
Guo Jun Liu

Zn-Al composites with carbonized rice husks were prepared by permanent mould. Microstructure and wear property of Zn-Al composites were measured under the condition of as-cast heated at 375 °C and 430 °C corresponding to solid and semi-solid range. The microstructure of as-cast, heated at 375 °C and 430 °C were different. The microstructure of as-cast Zn-Al alloy revealed primary a dendrites (α) and eutectoid α+η (α,rich Al, η rich Zinc)phases. The microstructure of ZA alloy with carbonized rice husks was fine dendrites for heated at 375 °C and second and third dendrites were almost dispersed. After semi-solid treatment, the microstructure of Zn-Al composites presented quasi-round or round and large with time prolonger. The hardness of Zn-Al composites rose with carbonized rice husks and increased slightly by heat treatment. Wear resistance of Zn-Al composites with carbonized rice husks improved significantly and increased with carbonized rice husks. But at the same amount of carbonized rice husks the wear resistance of the composite varied little regardless of being in the state of as-cast or heat treatment.


2010 ◽  
Vol 152-153 ◽  
pp. 628-633
Author(s):  
Fa Yun Zhang ◽  
Jian Xiong Ye ◽  
Hong Yan

Effects of SiC particle and holding time on microstructure evolution of SiCP/AZ61 composites during semi-solid isothermal heat treatment method were studied, and evolution mechanism of semi-solid microstructure of composites was discussed. The results indicated that the process of microstructure evolution of SiCP/AZ61 composites by the isothermal holding at the temperatures of 595°C for different times (0min~90min) experienced in succession the rapid merging of the secondary dendritic arms →large massive structure→melting and separating of the local grain boundary →spheroidization of the gains →slowing growth of globular microstructure. Synthetically, after isothermal holding at 595°C for 30min to 60min the favorable semi-solid microstructure can be obtained; Compared with the monolithic AZ61alloy, microstructure of SiCP/AZ61 composites during semi-solid isothermal heat-treatment was finer as a result of entering of Sic particle, and with the increasing of SiC particle volume fraction, globular gain size was smaller.


2006 ◽  
Vol 116-117 ◽  
pp. 239-242 ◽  
Author(s):  
Suk Won Kang ◽  
Dock Young Lee ◽  
Ki Bae Kim

In order to produce a high quality and cost effective part in the rheocasting process for an automobile industry it has been important to develop a slurry-on-demand process, which can manufacture the semi-solid slurry having a fine and globular structure of primary solid phase. The morphology of primary solid phase of semi-solid slurry is coarsened and globularized during an isothermal holding process in a solid-liquid region. Accordingly, in this paper, the microstructural evolution of semi-solid slurry during the isothermal holding at a various temperature in solid-liquid region was investigated to examine a coarsening and globularization behavior of primary solid phase. The semi-solid slurry of Al alloy was produced in a slurry maker using a multiplex-type slurry cup that we developed recently. A size of primary solid phase was the finer at the higher holding temperature, but under a constant holding time a roundness degree of primary solid phase was the lower at the lower holding temperature. Also, a coarsening rate of primary solid phase was not considered to be affected significantly by a holding temperature even though a little lower coarsening rate was obtained at the higher holding temperature.


2010 ◽  
Vol 146-147 ◽  
pp. 349-352
Author(s):  
Shi Kun Xie ◽  
Rong Xi Yi ◽  
Shu Qin Li ◽  
Xiao Liang Pan ◽  
Xiao Qiu Zheng

A new technique using slope vibration casting process during heating and isothermal holding period to prepare Al-7Si-2RE alloy has been studied. The small, near-spherical and non-dendritic microstructure with the semi-solid processing requirements has been obtained. Experiments show that the cooling method, pouring process and the convection of melt caused by slope vibration had significant effects on the formation of near-spherical primary gains. The water-cooled copper mold casting with slope vibration at the temperature near liquidus can obtain Al-7Si-2RE alloy with small homogeneous equiaxed grains, the average grain diameter is 48.3μm, and the average grain roundness is 1.92.


2014 ◽  
Vol 592-594 ◽  
pp. 968-971 ◽  
Author(s):  
K. Sekar ◽  
Allesu Kanjirathikal ◽  
M.A. Joseph

A356 alloys are attractive alternative for automotive and aeronautical applications. In this work the effects of T6 heat treatment in tribological properties of A356 alloy reinforced with Al2O3 nanoparticles of size 30nm are investigated. The percentage inclusions Al2O3 were varied from 0.5 to 1.5wt%. The particles were added with stirring at 400rpm and squeeze casting at 7500c and pressure of 600Mpa in the squeeze casting machine. The tribological properties of the samples were also investigated by pin-on-disk tests at 10,30,50and 70N, sliding speed 0.534m/s and sliding distance 1100m in dry condition. The lowest dry wear rate obtained through T6 heat treatment condition.


2016 ◽  
Vol 256 ◽  
pp. 58-62 ◽  
Author(s):  
Kang Du ◽  
Qiang Zhu ◽  
Da Quan Li

T6 heat treatment is an effective method to improve the comprehensive properties of Al-Si-Cu-Mg series aluminium alloys. Solution treatment temperature and time, quench process and media, as well as artificial ageing temperature and time are the key factors to determine mechanical properties. Besides these factors, natural ageing, i.e. the holding time between quenching and the starting of artificial treatment at ambient temperature was observed to be significant affect mechanical properties of the aluminium alloys. This effect on semi solid processed aluminium alloys was lack of investigations as the semi solid process produces T6 treatable and weldable components. The present paper focuses on the change regularity of hardness and precipitate behaviour of semi-solid 319S aluminium alloy under different natural ageing (NA) treatment additional to standard T6. Density and morphology of hardening precipitates are analysed using TEM, and the influence mechanism of NA during T6 heat treatment will be discussed. The results show that NA has a positive influence on mechanical properties of the rheo-cast 319S alloy.


2012 ◽  
Vol 532 ◽  
pp. 91-99 ◽  
Author(s):  
N. Mahathaninwong ◽  
T. Plookphol ◽  
J. Wannasin ◽  
S. Wisutmethangoon

Sign in / Sign up

Export Citation Format

Share Document