scholarly journals The Dispersion Composition of Polymethylmethacrylate Suspensions and Molecular Weights of Polymers Obtained by Suspension Polymerization in the Presence of Acrylic Copolymers as Surfactants

Author(s):  
I. A. Gritskova ◽  
O. A. Satskevich ◽  
E. S. Klyuzhin ◽  
A. I. L’vovskiy ◽  
A. V. Andreeva ◽  
...  

The dispersion composition of polymer suspensions and molecular weights of polymers obtained by suspension polymerization of MMA in the presence of polymer surfactants – methylmethacrylate and methacrylic acid copolymers – were studied. It is shown that a highly dispersed fraction of particles with diameters of 0.02–2.0 µm and a fraction of particles with large diameters (up to 1000 µm) are always present in the polymer suspension. After fractionation of polymer suspensions 3 fractions of particles with different diameters were obtained. For each particle fraction the molecular masses of polymers were determined by viscometry. A significant difference in the values of the molecular masses of polymers obtained as particles of small and large diameters – 105 and 106 Da, respectively – is shown. The presence of a highly dispersed fraction of particles in which a polymer of high molecular weight is formed has a noticeable effect on the average molecular weight of the polymer. In particles of small diameter polymerization takes place according to a mechanism close to the emulsion, due to the fact that the volume of such particles contains a small amount of radicals. The high rate of polymerization leads to the formation of a polymer of high molecular weight, the appearance of a gel effect and a decrease in the termination constant. In most particles, polymerization proceeds by a mechanism close to the solution polymerization, and polymers of low molecular weight are formed. This makes it possible to synthesize polymers of a given molecular weight in drops of certain dispersity.

1993 ◽  
Vol 66 (1) ◽  
pp. 92-97 ◽  
Author(s):  
Gary R. Hamed ◽  
Hasan S. Dweik

Abstract The adhesion between a sulfur-vulcanized SBR and polyethylenes (PE) of various molecular weights has been determined using a T-peel geometry. When the viscosity average molecular weight of the polyethylene exceeds about 700 k, bonding is sufficient to cause rubber tear during peeling. In contrast, with PE of Mv≈147k, joint strength is reduced by more than an order of magnitude and fracture proceeds between the SBR and PE. It is hypothesized that the high bond strength with the ultra high molecular weight polyethylene (UHMWPE) is due to the formation of entrapped tangles between chains of the two adherends. Consistent with this, SBR-UHMWPE bonds are not disrupted after extensive swelling in toluene.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1218
Author(s):  
Raffael Rathner ◽  
Wolfgang Roland ◽  
Hanny Albrecht ◽  
Franz Ruemer ◽  
Jürgen Miethlinger

The Cox-Merz rule is an empirical relationship that is commonly used in science and industry to determine shear viscosity on the basis of an oscillatory rheometry test. However, it does not apply to all polymer melts. Rheological data are of major importance in the design and dimensioning of polymer-processing equipment. In this work, we investigated whether the Cox-Merz rule is suitable for determining the shear-rate-dependent viscosity of several commercially available high-density polyethylene (HDPE) pipe grades with various molecular masses. We compared the results of parallel-plate oscillatory shear rheometry using the Cox-Merz empirical relation with those of high-pressure capillary and extrusion rheometry. To assess the validity of these techniques, we used the shear viscosities obtained by these methods to numerically simulate the pressure drop of a pipe head and compared the results to experimental measurements. We found that, for the HDPE grades tested, the viscosity data based on capillary pressure flow of the high molecular weight HDPE describes the pressure drop inside the pipe head significantly better than do data based on parallel-plate rheometry applying the Cox-Merz rule. For the lower molecular weight HDPE, both measurement techniques are in good accordance. Hence, we conclude that, while the Cox-Merz relationship is applicable to lower-molecular HDPE grades, it does not apply to certain HDPE grades with high molecular weight.


1941 ◽  
Vol 14 (3) ◽  
pp. 580-589 ◽  
Author(s):  
G. Gee ◽  
L. R. G. Treloar

Abstract As high elasticity is a property possessed only by substances of high molecular weight, it is of interest to enquire into the relation between the elastic properties of a highly elastic material such as rubber and its molecular weight. An investigation on these lines has been made possible through the work of Bloomfield and Farmer, who have succeeded in separating natural rubber into fractions having different average molecular weights. The more important physical properties of these fractions have been examined with the object of determining which of the properties are dependent on molecular weight and which are not. Fairly extensive observations were made on the fractions from latex rubber referred to as Nos. 2, 3 and 4 by Bloomfield and Farmer, and some less extensive observations were carried out on the less oxygenated portion of fraction No. 1 obtained from crepe rubber (called hereafter 1b) . Before considering these experimental results, and their relation to the molecular weights of the fractions, it will be necessary to refer briefly to the methods used for the molecular-weight determinations, and to discuss the significance of the figures obtained.


TAPPI Journal ◽  
2021 ◽  
Vol 20 (6) ◽  
pp. 381-391
Author(s):  
JULIANA M. JARDIM ◽  
PETER W. HART ◽  
LUCIAN LUCIA ◽  
HASAN JAMEEL

The present investigation undertook a systematic investigation of the molecular weight (MW) of kraft lignins throughout the pulping process to establish a correlation between MW and lignin recovery at different extents of the kraft pulping process. The evaluation of MW is crucial for lignin characterization and utilization, since it is known to influence the kinetics of lignin reactivity and its resultant physicochemical properties. Sweetgum and pine lignins precipitated from black liquor at different pHs (9.5 and 2.5) and different extents of kraft pulping (30–150 min) were the subject of this effort. Gel permeation chromatography (GPC) was used to deter- mine the number average molecular weight (Mn), mass average molecular weight (Mw), and polydispersity of the lignin samples. It was shown that the MW of lignins from both feedstocks follow gel degradation theory; that is, at the onset of the kraft pulping process low molecular weightlignins were obtained, and as pulping progressed, the molecular weight peaked and subsequently decreased. An important finding was that acetobromination was shown to be a more effective derivatization technique for carbohydrates containing lignins than acetylation, the technique typically used for derivatization of lignin.


2018 ◽  
Vol 775 ◽  
pp. 26-31
Author(s):  
Sukantika Manatsittipan ◽  
Kamonthip Kuttiyawong ◽  
Kazuo Ito ◽  
Sunan Tiptipakorn

In this study, the biodegradability and thermal properties the composites of polybutylene succinate (PBS) and chitosan of different molecular weights (Mn = 104,105, and 106 Da) were prepared at chitosan contents of 0-10 wt%. After 10 days of microbial degradation, the results show that the amount of holes from degradation was increased with either decreasing Mn or increasing chitosan contents. However, the size of holes was increased with increasing Mn and chitosan contents. The results from Differential Scanning Calorimeter (DSC) present that the melting temperature (Tm) of PBS was decreased with increasing chitosan contents. Moreover, there was no significant difference between Tm of the composites with different Mn of chitosan. From the TGA thermograms, the decomposition temperature at 10% weight loss (Td10) was decreased with increasing chitosan contents. Moreover, the water absorption of PBS/chitosan composites was increased with increasing Mn and content of chitosan.


2000 ◽  
Vol 14 (1) ◽  
pp. 69-75 ◽  
Author(s):  
G.D. Offner ◽  
R.F. Troxler

The existence of high-molecular-weight glycoproteins in saliva and salivary secretions has been recognized for nearly 30 years. These proteins, called mucins, are essential for oral health and perform many diverse functions in the oral cavity. Mucins have been intensively studied, and much has been learned about their biochemical properties and their interactions with oral micro-organisms and other salivary proteins. In the past several years, the major high-molecular-weight mucin in salivary secretions has been identified as MUC5B, one of a family of 11 human mucin gene products expressed in tissue-specific patterns in the gastrointestinal, respiratory, and reproductive tracts. MUC5B is one of four gel-forming mucins which exist as multimeric proteins with molecular weights greater than 20-40 million daltons. The heavily glycosylated mucin multimers form viscous layers which protect underlying epithelial surfaces from microbial, mechanical, and chemical assault. Another class of mucin molecules, the membrane-bound mucins, is structurally and functionally distinct from the gel-forming mucins. These proteins do not form multimers and can exist as both secreted and membrane-bound forms, with the latter anchored to epithelial cell membranes through a short membrane-spanning domain. In the present work, we show that two of the membrane-bound mucins, MUC1 and MUC4, are expressed in all major human salivary glands as well as in buccal epithelial cells. While the functions of these mucins in the oral environment are not understood, it is possible that they form a structural framework on the cell surface which not only is cytoprotective, but also may serve as a scaffold upon which MUC5B, and possibly other salivary proteins, assemble.


2004 ◽  
Vol 77 (2) ◽  
pp. 380-390
Author(s):  
Wonmun Choi ◽  
Tomoyuki Matsumura

Abstract The reactions of dichloroalkanes and sodium tetra-sulfide (Na2S4) were carried out in a mixture of water and toluene to produce corresponding cyclic polysulfides and polysulfide polymer. The low molecular weights of cyclic sulfides were obtained by the reaction at 90 °C, while the high molecular weight of polysulfide polymer was obtained by the reaction at 50 °C. GPC chromatograms and Mass spectra revealed that the structures of cyclic polysulfide were 1:1, 2:2, and 3:3 adducts of dichloroalkane and sodium tetra-sulfide. The mechanical properties of vulcanized NR at 148 °C with cyclic sulfides were similar to that with sulfur. However, both tensile strength and elongation at break of vulcanized NR at 170 °C with cyclic sulfides are much higher than that with sulfur. The aging properties of vulcanized NR at 148 °C or 170 °C with cyclic polysulfides indicate better stability.


1955 ◽  
Vol 28 (2) ◽  
pp. 504-507
Author(s):  
G. W. Drake

Abstract Fractionation of the rubber hydrocarbon in temperate climates has usually resulted in high molecular-weight fractions, with a molecular weight of the order of one million. Bloomfield has shown that fresh latex contains a considerable proportion of hydrocarbon having an intrinsic viscosity (η) of 10 or over and, therefore, a molecular weight of well over 106. The fractionation technique used by Bloomfield in Malaya has now been applied by the writer to smoked sheet and to F rubber, working in the United Kingdom. No very high molecular-weight fractions were found in the smoked sheet, but the F rubber yielded a fraction of (η)=7.3 and a number average molecular weight 6×106, determined osmometrically. The average molecular weight of natural rubber when freshly prepared is probably well over a million, and includes a substantial portion having a molecular weight of several millions. By the time smoked sheet has reached temperate climates, the high molecular-weight portion has probably been converted to gel. F rubber, presumably because of its different method of preparation, retains the major part of its high molecular-weight material during prolonged storage.


2020 ◽  
Vol 81 (2) ◽  
pp. 301-308 ◽  
Author(s):  
Wenzhe Song ◽  
Yu Zhang ◽  
Amir Hossein Hamidian ◽  
Min Yang

Abstract The biodegradation of polyacrylamide (PAM) includes the hydrolysis of amino groups and cleavage of the carbon chain; however, the effect of molecular weight on the biodegradation needs further investigations. In this study, biodegradation of low molecular weight PAM (1.6 × 106 Da) was evaluated in two aerobic (25 °C and 40 °C) and two anaerobic (35 °C and 55 °C) reactors over 100 days. The removal of the low molecular weight PAM (52.0–52.6%) through the hydrolysis of amino groups by anaerobic treatment (35 °C and 55 °C) was much higher than that of the high molecular weight (2.2 × 107 Da, 11.2–17.0%) observed under the same conditions. The molecular weight was reduced from 1.6 × 106 to 6.45–7.42 × 105 Da for the low molecular weight PAM, while the high molecular weight PAM declined from 2.2 × 107 to 3.76–5.87 × 106 Da. The results showed that the amino hydrolysis of low molecular weight PAM is easier than that of the high molecular weight one, while the cleavage of its carbon chain is still difficult. The molecular weights of PAM in the effluents from the two aerobic reactors (25 °C and 40 °C) were further reduced to 4.31 × 105 and 5.68 × 105 Da by the biofilm treatment, respectively. The results would be useful for the management of wastewater containing PAM.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1230
Author(s):  
Jie Li ◽  
Jinhua Du

This research was to explore the distribution and some molecular characterization of arabinoxylan in wheat beer (B), beer foam (BF) and defoamed beer (DB) because of the crucial influences of arabinoxylan on wheat beer and its foam. The purified arabinoxylan from B, BF, and DB were fractionated by ethanol of 50%, 67%, 75%, and 80%. The monosaccharide composition, substitution degree (Ara/Xyl ratio, A/X), and average degrees of polymerization (avDP) of arabinoxylan were investigated. Molecular weight and microstructure were also involved in this study by GPC-LLS and SEM, respectively. Under the same ethanol concentration, the arabinoxylan content in the BF was higher than the other two, respectively, and it was precipitated in BF fraction with 50% ethanol which accounted for 80.84% of the total polysaccharides. Meanwhile, the greatest substitution degree (A/X) and highest value of avDP of the arabinoxylan was found in all beer foam fractions regardless of the concentration of ethanol used. The average degrees of polymerization (avDP) of arabinoxylan displayed a significant difference (p < 0.05) among B, BF, and DB. Furthermore, arabinoxylan presented varied microstructure with irregular lamellas and spherical structures and the weight-average molecular weight (Mw) of arabinoxylan showed the lowest values in BF, while the largest values were shown in DB. Therefore, arabinoxylan was more accumulated in beer foam, especially in 50% ethanol, characterised by greater value of A/X and avDP, as well as lower Mw. It was suggested that the arabinoxylan played important roles in maintaining wheat beer foam characteristics.


Sign in / Sign up

Export Citation Format

Share Document