scholarly journals Power Optimization for ASIC Design (Low power ASIC)

Author(s):  
Hitesh H Vandra

The modern era of embedded system design is geared toward the design of low-power systems. One way to reduce power in an application-specified integrated circuit (ASIC) implementation is to reduce feature size. Scaling of feature sizes in semiconductor technology has been responsible for increasingly higher computational capacity of silicon. However, questions regarding the limits of scaling have arisen in recent years due to the presence of leakage. As the supply voltage is lowered to satisfy the performance requirement, the threshold voltage has to be scaled, which increases leakage. More than 40% of the total power consumption is due to leakage of the transistor is in DSM. This leakage will increase with scaling become comparable with switching power. The goal of this paper is to analyse different low power circuits and optimization techniques to improve the power dissipation with the use of power gating components, retention registers, level shifters, isolation cells etc.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5309
Author(s):  
Shengbiao An ◽  
Shuang Xia ◽  
Yue Ma ◽  
Arfan Ghani ◽  
Chan Hwang See ◽  
...  

Analogue-to-digital converters (ADC) using oversampling technology and the Σ-∆ modulation mechanism are widely applied in digital audio systems. This paper presents an audio modulator with high accuracy and low power consumption by using a discrete second-order feedforward structure. A 5-bit successive approximation register (SAR) quantizer is integrated into the chip, which reduces the number of comparators and the power consumption of the quantizer compared with flash ADC-type quantizers. An analogue passive adder is used to sum the input signals and it is embedded in a SAR ADC composed of a capacitor array and a dynamic comparator which has no static power consumption. To validate the design concept, the designed modulator is developed in a 180 nm CMOS process. The peak signal to noise distortion ratio (SNDR) is calculated as 106 dB and the total power consumption of the chip is recorded as 3.654 mW at the chip supply voltage of 1.8 V. The input sine wave of 0 to 25 kHz is sampled at a sampling frequency of 3.2 Ms/s. Moreover, the results achieve a 16-bit effective number of bits (ENOB) when the amplitude of the input signal is varied between 0.15 and 1.65 V. By comparing with other modulators which were realized by a 180 nm CMOS process, the proposed architecture outperforms with lower power consumption.


2015 ◽  
Vol 785 ◽  
pp. 734-738
Author(s):  
Mohd Azlan Abu ◽  
Harlisya Harun ◽  
Mohammad Yazdi Harmin ◽  
Noor Izzri Abdul Wahab

To provide fast digital communications systems, energy efficient, high-performance, low power is critical for decoding mobile receiver device. This paper proposes a low power optimization techniques in the Add Compare Select (ACS) unit for Space Time trellis codes (STTC) Viterbi decoder. STTC Viterbi decoder is used as a reference case. This paper discusses about how to lower the power in the ACS architecture, to optimize the Viterbi decoder STTC in reducing the total power consumption. Based on the results of design and analysis, power consumption Viterbi decoder modeling, low power system for STTC Viterbi decoder is proposed. Design and optimization of ACS unit in STTC Viterbi decoding is done using Verilog HDL language. Power analysis tools in the software Altera Quartus 2 is used for the synthesis of total system power consumption. Optimization strategy showed an increase of 83% power reduction compared to previous studies.


2012 ◽  
Vol 203 ◽  
pp. 469-473
Author(s):  
Ruei Chang Chen ◽  
Shih Fong Lee

This paper presents the design and implementation of a novel pulse width modulation control class D amplifiers chip. With high-performance, low-voltage, low-power and small area, these circuits are employed in portable electronic systems, such as the low-power circuits, wireless communication and high-frequency circuit systems. This class D chip followed the chip implementation center advanced design flow, and then was fabricated using Taiwan Semiconductor Manufacture Company 0.35-μm 2P4M mixed-signal CMOS process. The chip supply voltage is 3.3 V which can operate at a maximum frequency of 100 MHz. The total power consumption is 2.8307 mW, and the chip area size is 1.1497×1.1497 mm2. Finally, the class D chip was tested and the experimental results are discussed. From the excellent performance of the chip verified that it can be applied to audio amplifiers, low-power circuits, etc.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Zigang Dong ◽  
Xiaolin Zhou ◽  
Yuanting Zhang

We proposed a new method for designing the CMOS differential log-companding amplifier which achieves significant improvements in linearity, common-mode rejection ratio (CMRR), and output range. With the new nonlinear function used in the log-companding technology, this proposed amplifier has a very small total harmonic distortion (THD) and simultaneously a wide output current range. Furthermore, a differential structure with conventionally symmetrical configuration has been adopted in this novel method in order to obtain a high CMRR. Because all transistors in this amplifier operate in the weak inversion, the supply voltage and the total power consumption are significantly reduced. The novel log-companding amplifier was designed using a 0.18 μm CMOS technology. Improvements in THD, output current range, noise, and CMRR are verified using simulation data. The proposed amplifier operates from a 0.8 V supply voltage, shows a 6.3 μA maximum output current range, and has a 6 μW power consumption. The THD is less than 0.03%, the CMRR of this circuit is 74 dB, and the input referred current noise density is166.1 fA/Hz. This new method is suitable for biomedical applications such as electrocardiogram (ECG) signal acquisition.


2018 ◽  
Vol 7 (2.12) ◽  
pp. 205
Author(s):  
T Vasudeva Reddy ◽  
Dr B.K. Madhavi

Low power circuits functioning in sub threshold were proposed in earlier seventies. Recently, growing with the need of low power consumption, the low power circuits have became more attractive. However, the act of sub threshold design logics has become sensitive to the supply voltage & process variations like temperature and so on. In sub threshold region of operations the supply voltage (Vgs) is less than the threshold (Vth).This leads to less power dissipation in over all circuit, but drastically increment in propagation delay. The major intention of the paper is to offer new low power & less delay digital circuits. SRAM is the major power drawing element and dissipation is about 40% in total power. The primary objective is to design of sub threshold SRAM design, Functionality and performance is estimated from the power and delay.The second objective is to offer novel Source coupled logic based SRAM (ST-SC SRA) M & Operating these design under sub threshold operating region. Performance is analyzed through power and delay. Finally comparing the traditional sub threshold SRAM with source coupled based SRAM in power and delay on par with the performance. Discussing some of the applications, where there is a requirement of less power and delay. 


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1429 ◽  
Author(s):  
Jin-Fa Lin ◽  
Cheng-Yu Chan ◽  
Shao-Wei Yu

In this paper, a novel latch-adder based multiplier design, targeting low voltage and low power IoT applications is presented. It employs a semi-dynamic (dynamic circuit with static keeper circuit) full adder design which efficiently incorporates the level sensitive latch circuit with the adder cell. Latch circuit control signals are generated by a chain of delay cell circuits. They are applied to each row of the adder array. This row-wise alignment ensures an orderly procedure, while successfully removing spurious switching resulting in reduced power consumption. Due to the delay cell circuit of our design is also realized by using full adder. Therefore, it is unnecessary to adjust the transistor sizes of the delay cell circuit deliberately. Post-layout simulation results on 8 × 8 multiplier design show that the proposed design has the lowest power consumption of all design candidates. The total power consumption saving compared to conventional array multiplier designs is up to 38.6%. The test chip measurement shows successful operations of our design down to 0.41 V with a power consumption of only 427 nW with a maximum frequency 500 KHz.


Sensors ◽  
2020 ◽  
Vol 20 (13) ◽  
pp. 3649
Author(s):  
Minhyun Jin ◽  
Hyeonseob Noh ◽  
Minkyu Song ◽  
Soo Youn Kim

In this paper, we propose a complementary metal-oxide-semiconductor (CMOS) image sensor (CIS) that has built-in mask circuits to selectively capture either edge-detection images or normal 8-bit images for low-power computer vision applications. To detect the edges of images in the CIS, neighboring column data are compared in in-column memories after column-parallel analog-to-digital conversion with the proposed mask. The proposed built-in mask circuits are implemented in the CIS without a complex image signal processer to obtain edge images with high speed and low power consumption. According to the measurement results, edge images were successfully obtained with a maximum frame rate of 60 fps. A prototype sensor with 1920 × 1440 resolution was fabricated with a 90-nm 1-poly 5-metal CIS process. The area of the 4-shared 4T-active pixel sensor was 1.4 × 1.4 µm2, and the chip size was 5.15 × 5.15 mm2. The total power consumption was 9.4 mW at 60 fps with supply voltages of 3.3 V (analog), 2.8 V (pixel), and 1.2 V (digital).


2013 ◽  
Vol 22 (10) ◽  
pp. 1340033 ◽  
Author(s):  
HONGLIANG ZHAO ◽  
YIQIANG ZHAO ◽  
YIWEI SONG ◽  
JUN LIAO ◽  
JUNFENG GENG

A low power readout integrated circuit (ROIC) for 512 × 512 cooled infrared focal plane array (IRFPA) is presented. A capacitive trans-impedance amplifier (CTIA) with high gain cascode amplifier and inherent correlated double sampling (CDS) configuration is employed to achieve a high performance readout interface for the IRFPA with a pixel size of 30 × 30 μm2. By optimizing column readout timing and using two operating modes in column amplifiers, the power consumption is significantly reduced. The readout chip is implemented in a standard 0.35 μm 2P4M CMOS technology. The measurement results show the proposed ROIC achieves a readout rate of 10 MHz with 70 mW power consumption under 3.3 V supply voltage from 77 K to 150 K operating temperature. And it occupies a chip area of 18.4 × 17.5 mm2.


2018 ◽  
Vol 27 (13) ◽  
pp. 1850206 ◽  
Author(s):  
Qingshan Yang ◽  
Peiqing Han ◽  
Niansong Mei ◽  
Zhaofeng Zhang

A 16.4[Formula: see text]nW, sub-1[Formula: see text]V voltage reference for ultra-low power low voltage applications is proposed. This design reduces the operating voltage to 0.8[Formula: see text]V by a BJT voltage divider and decreases the silicon area considerably by eliminating resistors. The PTAT and CTAT are based on SCM structures and a scaled-down [Formula: see text], respectively, to improve the process insensitivity. This work is fabricated in 0.18[Formula: see text][Formula: see text]m CMOS process with a total area of 0.0033[Formula: see text]mm2. Measured results show that it works properly for supply voltage from 0.8[Formula: see text]V to 2[Formula: see text]V. The reference voltage is 467.2[Formula: see text]mV with standard deviation ([Formula: see text]) being 12.2 mV and measured TC at best is 38.7[Formula: see text]ppm/[Formula: see text]C ranging from [Formula: see text]C to 60[Formula: see text]C. The total power consumption is 16.4[Formula: see text]nW under the minimum supply voltage at 27[Formula: see text]C.


1996 ◽  
Vol 07 (02) ◽  
pp. 305-322
Author(s):  
KAI-YUAN CHAO ◽  
D. F. WONG

In this paper, a floorplanner for low power design is presented. Our objective is to optimize total power consumption and area during the selection and placement of various implementations for circuit modules. Furthermore, the proposed method considers performance requirements, power line noises, and distribution of power consumption in order to generate lower and evenly distributed power dissipation over the resulting circuit floorplan with a specified performance. For a set of benchmark circuits we tested, on the average, our floorplanner can achieve decreases of total power consumption, wire-length, and power/ground network size by 18.3%, 4.6%, and 24%, respectively, at the cost of an area increase of 8.8% when compared with an existing area/wire-length driven floorplanner.


Sign in / Sign up

Export Citation Format

Share Document