scholarly journals HoT Turning Operation in Finite Element Analysis

Author(s):  
P. Bhaskar ◽  
S. Jithendra Naik ◽  
L. Balasubramanyam

There is a requirement for materials of high hardness and protection from cutting. As we probably aware the machining of these materials has dependably been an incredible test. Machining of these composites and materials required for cutting high-quality, which now and again isn't prudent and in some cases even illogical. Also, even the non-ordinary procedures are by and large constrained to the perspective of efficiency. The benefits of simple part assembling of exorbitant hard materials can be considerable as far as decreasing expenses and lead times machined contrasted with the customary one includes the warmth treatment, granulating and manual completing/cleaning. In the hot working at a temperature of work piece is expanded in order to decrease its shear quality. This paper will centre around hot working of high manganese steel with oil fuel. A few parameters, for example, cutting pace, feed, profundity of cut and the temperature of the work piece are taken. An investigation was led. Indeed, even the machining process was reproduced in ANSYS and Disfigure 2D to discover relating distortion, rate of hardware wear, cutting power and the temperature dissemination.


2014 ◽  
Vol 592-594 ◽  
pp. 511-515
Author(s):  
Neeraj Sharma ◽  
Neeraj Ahuja ◽  
Sorabh Gupta ◽  
Ajit Singh ◽  
Renu Sharma

Wire Electric Discharge machine is non-conventional thermo-electric spark erosion machining process to cut conductive metal and alloys. The main mechanism of machining is spark erosion between the tool and work-piece. High carbon high chromium tool steel (D-2) is a hard alloy with high hardness and wear resisting property. The purpose of this study is to investigate the effect of process parameters on the machining of D-2 tool steel. D-2 tool steel used in tool and die industries. Response Surface Methodology (RSM) is used to formulate a mathematical model which correlates the independent process parameters with the desired dimensional deviation. The central composite rotatable design has been used to conduct the experiments. Genetic algorithm is used to predict the best individual parameters along with the predicted fitness values.



Author(s):  
Wiriyakorn Phanitwong ◽  
Sutasn Thipprakmas

The pressing process, as compared to the machining process, makes good utilization of work piece material and shortens the production time, and as such it is increasingly used for production of complex shaped parts. A particular type of pressing is sheet-extrusion which controls the flow of material into special punch and die sets to produce an extruded shape. However, some particularly complex shaped parts cannot be made by sheet-extrusion due to the formation of piping defects. In this study, the finite element method (FEM) was used to investigate the formation of piping defects. In addition, the relationship between the characteristic dimensions of the extruded shape and the piping defect was also examined. Laboratory pressing experiments were performed to validate the accuracy of the FEM simulation results. Based on the stress distribution and velocity profiles within the extruded work piece, the relationship between the extruded shape and the piping defect was clearly identified. Furthermore, the FEM simulation results showed good agreement with the experimental results with regards to the dimensions of the extruded shape and the piping defect.



Electrical discharge machining (EDM) is one of the oldest nontraditional machining processes, commonly used in automotive, aerospace and ship building industries for machining metals that have high hardness, strength and to make complicated shapes that cannot be produced by traditional machining techniques. The process is based on the thermoelectric energy between the work piece and an electrode. EDM is slow compared to conventional machining, low material removal rate, high surface roughness, high tool wear and formation of recast layer are the main disadvantages of the process. Tool wear rate, material removal rate and surface quality are important performance measures in electric discharge machining process. Numbers of ways are explored by researchers for improving and optimizing the output responses of EDM process. The paper summarizes the research on die-sinking EDM relating to the improvements in the output response.



Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 532
Author(s):  
A Jo ◽  
Myeong Jeong ◽  
Sang Lee ◽  
Young Moon ◽  
Sun Hwang

A multi-stage cold forging process was developed and complemented with finite element analysis (FEA) to manufacture a high-strength one-body input shaft with a long length body and no separate parts. FEA showed that the one-body input shaft was manufactured without any defects or fractures. Experiments, such as tensile, hardness, torsion, and fatigue tests, and microstructural characterization, were performed to compare the properties of the input shaft produced by the proposed method with those produced using the machining process. The ultimate tensile strength showed a 50% increase and the torque showed a 100 Nm increase, confirming that the input shaft manufactured using the proposed process is superior to that processed using the machining process. Thus, this study provides a proof-of-concept for the design and development of a multi-stage cold forging process to manufacture a one-body input shaft with improved mechanical properties and material recovery rate.



Author(s):  
Prof. Hemant k. Baitule ◽  
Satish Rahangdale ◽  
Vaibhav Kamane ◽  
Saurabh Yende

In any type of machining process the surface roughness plays an important role. In these the product is judge on the basis of their (surface roughness) surface finish. In machining process there are four main cutting parameter i.e. cutting speed, feed rate, depth of cut, spindle speed. For obtaining good surface finish, we can use the hot turning process. In hot turning process we heat the workpiece material and perform turning process multiple time and obtain the reading. The taguchi method is design to perform an experiment and L18 experiment were performed. The result is analyzed by using the analysis of variance (ANOVA) method. The result Obtain by this method may be useful for many other researchers.



2018 ◽  
Vol 783 ◽  
pp. 148-153
Author(s):  
Muhammad Sajjad ◽  
Jithin Ambarayil Joy ◽  
Dong Won Jung

Incremental sheet metal forming, is a non-conventional machining process which offers higher formability, flexibility and low cost of production than the traditional conventional forming process. Punch or tool used in this forming process consecutively forces the sheet to deform locally and ultimately gives the target profile. Various machining parameters, such as type of tool, tool path, tool size, feed rate and mechanical properties of sheet metal, like strength co-efficient, strain hardening index and ultimate tensile strength, effects the forming process and the formability of final product. In this research paper, Single Point Incremental Forming was simulated using Dassault system’s Abaqus 6.12-1 and results are obtained. Results of sheet profile and there change in thickness is investigated. For this paper, we simulated the process in abaqus. The tool diameter and rotational speed is find out for the production of parts through incremental forming. The simulation is done for two type of material with different mechanical properties. Various research papers were used to understand the process of incremental forming and its simulation.



2011 ◽  
Vol 66-68 ◽  
pp. 1163-1166
Author(s):  
Mao Jun Chen ◽  
Zhong Jin Ni ◽  
Liang Fang

In automated manufacturing systems, one of the most important issues is the detection of tool wear during the machining process. The Hausdorff-Besicovitch (HB) dimension is used to analyze the feature of the surface texture of work-piece in this paper. The value of the fractal dimension of the work-piece surface texture tends to decrease with the machining process, due to the texture becoming more complex and irregular, and the tool wear is also becoming more and more serious. That can describe the inherent relationship between work-piece surface texture and tool wear. The experimental results demonstrate the probability of using the fractal dimension of work-piece surface texture to monitor the tool wear condition.



Author(s):  
H Orbanic ◽  
B Jurisevic ◽  
D Kramar ◽  
M Grah ◽  
M Junkar

This contribution presents the possibilities of applying abrasive water jet (AWJ) technology for multi-material micromanufacture. The working principles of injection and suspension AWJ systems are presented. Characteristics of this technology, such as the ability to machine virtually any kind of material and the absence of a relevant heat-affected zone, are given, especially those from which the production of microcomponents can benefit. A few attempts to miniaturize the AWJ machining process are described in the state-of-the-art preview. In order to develop and improve the AWJ as a microtool, a numerical simulation based on the finite element analysis is introduced to evaluate the effect of the size abrasive particles and the process efficiency of microsized AWJ. An ongoing project in which an improved mini AWJ cutting head is being developed, is presented. Finally, the possible fields of application are given, including a case study on the machining of miniaturized heat sinks.



Micromachines ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 578 ◽  
Author(s):  
Bingrui Lv ◽  
Guilian Wang ◽  
Bin Li ◽  
Haibo Zhou ◽  
Yahui Hu

This paper describes the innovative design of a three-dimensional (3D) motion device based on a flexible mechanism, which is used primarily to produce accurate and fast micro-displacement. For example, the rapid contact and separation of the tool and the workpiece are realized by the operation of the 3D motion device in the machining process. This paper mainly concerns the device performance. A theoretical model for the static performance of the device was established using the matrix-based compliance modeling (MCM) method, and the static characteristics of the device were numerically simulated by finite element analysis (FEA). The Lagrangian principle and the finite element analysis method for device dynamics are used for prediction to obtain the natural frequency of the device. Under no-load conditions, the dynamic response performance and linear motion performance of the three directions were tested and analyzed with different input signals, and three sets of vibration trajectories were obtained. Finally, the scratching experiment was carried out. The detection of the workpiece reveals a pronounced periodic texture on the surface, which verifies that the vibration device can generate an ideal 3D vibration trajectory.



2020 ◽  
Vol 856 ◽  
pp. 43-49
Author(s):  
Santosh Kumar Tamang ◽  
Nabam Teyi ◽  
Rinchin Tashi Tsumkhapa

Machining is one of the major manufacturing processes that converts a raw work piece of arbitrary size into a finished product of definite shape of predetermined size by suitably controlling the relative motion between the tool and the work. Lately, machining process is shifting towards high speed machining (HSM) from conventional machining to improve and efficiently increase production, and towards dry machining from excessive coolant used wet machining to improve economy of production. And the tools used are mostly hardened alloys to facilitate HSM. The work piece materials are continually improving their properties by emergence and development of newer and high resistive super alloys (HRSA). In this paper an attempt has been made to validate an experimental result of cutting force obtained by performing HSM on an HRSA Inconel 718, by comparing it with the numerical result obtained by simulating the same setting using DEFORM 3D software. Based on the comparison it is found that the simulated results exhibit close proximity with the experimental results validating the experimental results and the effectiveness of the software.



Sign in / Sign up

Export Citation Format

Share Document