scholarly journals PEMANFAATAN LIMBAH GENTENG BETON PADA PAVING BLOCK

2019 ◽  
Vol 1 (1) ◽  
pp. 36-45
Author(s):  
Pratikto Pratikto ◽  
Ginanjar A

Paving block merupakan bahan bangunan yang digunakan sebagai pekerasan permukaan jalan, baik jalan untuk keperluan parkir kendaraan ataupun jalan raya, ataupun untuk keperluan dekoratif pada pembuatan taman. Bahan penyusun paving block adalah semen, pasir dan air dengan atau tanpa bahan tambah lainnya. Bahan tambah yang digunakan dapat berupa limbah atau sisa bahan bangunan yang tidak terpakai. Penggunaan limbah bertujuan untuk mendapatkan mutu paving block sesuai standard dan memanfaatkan limbah secara optimal. Limbah genteng beton banyak ditemukan di sekitar bangunan bertingkat yang sudah lama dan khususnya kampus Politeknik Negeri Jakarta.Limbah ini dapat digunakan sebagai bahan pembentuk paving block sebagai substitusi agregat kasar. Dalam penelitian ini digunakan perbandingan semen dan pasir adalah 1 : 3 dengan presentase limbah genteng beton sebesar 0%, 10%, 20%, 30%, dan 40%. Nilai fas yang digunakan adalah 0,35. Hasil pengujian nilai kuat tekan yang ditinjau pada hari ke 7 pada presentase 0% sebesar 52,59 Mpa, presentase 10% sebesar 44,949 Mpa, presentase 20% sebesar 40,942 Mpa, presentase 30% sebesar 40,685 Mpa dikategorikan mutu A, sedangkan presentase 40% sebesar 26 MPa dikategorikan mutu B.Kata kunci: paving block, Limbah genteng beton, agregat kasar Paving block is a material that is used as a road surface hardening, either for vehicle parking , highways, or for decorative purposes in gardening. The constituent material of paving blocks are cement, sand and water with or without other added material. The added material used can be in the form of waste or residual unused building materials. The use of waste building material of concrete tile aims to get the quality of paving blocks according to standards and utilize waste optimally. Waste concrete roof tiles can be found around many high-rise building constructions and especially Jakarta State Polytechnic campus.This waste can be used as a paving block as a rough aggregate substitute. In this study the ratio of cement and sand was 1: 3 with a percentage of concrete tile waste of 0%, 10%, 20%, 30%, and 40%. The fas value used is 0.35. The testing results of compressive strength which is reviewed on day 7 at a percentage of 0% of 52.59 MPa, 10% of 44.949 MPa, 20% of 40.942 MPa, 30% of 40.658 MPa are categorized as grade A, while at a percentage of 40% the compressive strength is 26 MPa which is categorized as grade B.Keywords: paving block , waste concrete tile, coarse aggregate

2021 ◽  
Vol 2 (1) ◽  
pp. 46-54
Author(s):  
Neti Rahmawati ◽  
Irwan Lakawa ◽  
Sulaiman Sulaiman

Concrete is one of the most widely used building materials today interms of physical construction. Concrete is made from a mixture offine, coarse aggregate, cement, and water with a certain ratio, aswell as materials that are usually added to the concrete mixtureduring or during mixing, to changing the properties of concrete tomake it more suitable in certain jobs and more economical, can alsobe added with certain other mixed materials as needed if deemednecessary. Seashells can be used to mix concrete. This study aims todetermine whether the addition of shells aggregate shells in aconcrete mixture can affect the mechanical properties of concrete.The specimens used are in the form of cubes with a size of 15cm x 15cm x 15 cm, consisting of additional concrete coarse and fineaggregate with shell substitution percentage of 0%, 15%, 20% with atotal sample of 45, with the planned concrete quality of K225. Theuse of sea shells in increasing the compressive strength of concrete isbetter used as fine aggregate than coarse aggregate. The use of seashells as a substitute for fine aggregates achieves maximum resultsat 20% composition.


2013 ◽  
Vol 10 (1) ◽  
Author(s):  
Rofikatul Karimah

Block made of mud is a building material used in making wall for building that is made fromsand, cement, and fly ash using certain percentage mud in sand. This research aimed to know theeffect of the use of lapindo mud towards the compressive strength, the absorption of block waterwith the mud dosage in sand are: 0%, 10%, 20%, 30%, and 40%. This research was an experimentalresearch; each design was made in size 10x20x40 cm using 5% of fly ash and without fly ash.The result of this research showed that the highest compressive strength was raised in 10%mud in sand with 5% fly ash that was 195 kg/cm2 or increased about 3.44 kg/cm2 within increasingpercentage about 10.651% towards the compressive of block without lapindo mud with 5% of flyash, and was included in class I quality of block. While for the 30% and 40% mud percentage islower compared with normal compressive strength of block. The test result of water absorption oflapindo mud block showed the higher value than 20% for lapindo mud block with 5% fly ash, inframing the mud blocks as the wall, those blocks need to be soaked first because the absorptionvalue of block is higher than 20%. Lapindo mud block without 5% fly ash has bricks water absorptionless than 20%, while in framing those bricks, they don’t need to be soaked because the absorptionof brick if lower than 20%. By using fly ash in mud block, we can get the higher compressivestrength and the lower water absorption.Keyword: Porong Mud, Block, Fly Ash, Compressive Strength, Absorption


UKaRsT ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 21
Author(s):  
Muttaqin Fauzin Istighfarin ◽  
Rasio Hepiyanto

Abstract Paving block is one of the products of building materials used as the top layer of the street structure, compared to other pavements like cast concrete and asphalt, paving block has been widely chosen especially to the streets used to traversed by low-speeed vehicles. This study aims to know and analyze how strong the influence of additional water hyacinth fiber to the compressive strength of K-200 paving block. Method used in this study is experimental method, with the comparison of mix design reffering to the comparison of concrete quality mixture K-200 (SNI 7394-2008). The result is K-200 paving block decreases its compressive strength after given the mixture of water hyacinth fiber. The precentage of the lowest decrease is in the 0,2 mixture of 55,69% and the highest decrease is in the mixture of 0,8 with the decline presentage of of 82,39%. The score of compressive strength for each test object is: Normal of 209,53 kg/cm², 2% of 92,86 kg/cm², 4% of 84,53 kg/cm², 6% of 58,33 kg/cm², and 8% of 36,90 kg/cm². The relationship of non-linear regression can be seen in R² = 1 on  polinomial orde 4. Paving block with with code objects test “Normal” classified as in the quality of paving block B with compressive strength of 209,53 kg/cm² (17,03 Mpa), while for paving block with extra water hyacinth fiber, it is below the compressive strength standard according to SNI 03-0691-1996. Keywords: Rigid Pavement, Paving Block, Water Hyacinth, Compressive Strength.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Neslihan Doğan-Sağlamtimur ◽  
Adnan Güven ◽  
Ahmet Bilgil

Pumice, cements (CEM I- and CEM II-type), waste fly and bottom ashes (IFA, GBA, and BBA) supplied from international companies were used to produce lightweight building materials, and physical-mechanical properties of these materials were determined. Axial compressive strength (ACS) values were found above the standards of 4 and 8 MPa (Bims Concrete (BC) 40 and 80 kgf/cm2 class) for cemented (CEM I) pumice-based samples. On the contrary, the ACS values of the pumice-based cemented (CEM II) samples could not be reached to these standards. Best ACS results (compatible with BC80) from these cemented lightweight material samples produced with the ashes were found in 50% mixing ratio as 10.6, 13.2, and 20.5 MPa for BBA + CEM I, GBA + CEM II, and IFA + CEM I, respectively, and produced with pumice were found as 8.4 MPa (same value) for GBA + pumice + CEM II (in 25% mixing ratio), BBA + pumice + CEM I (in 100% mixing ratio), and pumice + IFA + CEM I (in 100% mixing ratio), respectively. According to the results, cemented ash-based lightweight building material produced with and without pumice could widely be used for constructive purposes. As a result of this study, an important input to the ecosystem has been provided using waste ashes, whose storage constitutes a problem.


2014 ◽  
Vol 584-586 ◽  
pp. 1750-1755
Author(s):  
Xiao Lei Chang ◽  
Song Gu ◽  
Zhi Zheng

Compared with natural aggregate, recycled aggregate apparent density, bulk density, porosity, water absorption, large crushing index value, which corresponds to aggregate different sources have different indicators, which largely of recycled concrete limits on the application.. In order to more efficiently improve the utilization of recycled aggregate, ensure the stability production quality of recycled concrete, source unknown and difficult to directly measure its intensity of waste concrete materials, at the time of the preparation of recycled aggregate, it is recommended to repeat loading, using different pressures from different standard strength of recycled concrete coarse aggregate crushed curve to use as a criterion to determine the source of their overall strength. Different in different sources of strength recycled aggregate crushing value mainly reflected on the bond strength.


2019 ◽  
Vol 8 (2) ◽  
pp. 42 ◽  
Author(s):  
Jan Bredenoord ◽  
Wutinai Kokkamhaeng ◽  
Pichit Janbunjong ◽  
Ongarj Nualplod ◽  
Suwatchai Thongnoy ◽  
...  

This paper is about Interlocking Stabilized Soil Blocks (ISSB) as developed in Thailand. ISSB are seen as an eco-friendly building material for home building and structures such as water tanks and sanitation facilities. For several decades the Thai R&D Institute TISTR has worked on developing and testing ISSB, which in other countries are called compressed stabilized earth blocks or CSEB. The composition of building blocks and the quality of building structures determine together the structural quality of the house or building. If there is a need for earthquake- and storm resistance, the building blocks and the structures must have specific features. Building stacked houses is an important issue given the growing scarcity of land for housing and the increasing land prices. ISSB is not only applied in Thailand, but also in Cambodia for low-cost housing and in Nepal for home reconstruction after the 2015 earthquake. ISSB or CSEB is also applied in other countries as an alternative building material and technology to replace the use of fired bricks and concrete building blocks for housing. Reducing the use of cement in the materials and structures is important for environmental reasons, but in ISSB/CSEB the use of cement as a stabilizer cannot always be avoided. This is surely the case in areas where earthquakes, heavy storms and floods can occur. Although this paper focuses mainly on technical aspects of sustainable housing and construction, there is also a focus on social sustainability, meaning a strong involvement of local communities in the production of sustainable building materials for walls, newly developed construction technologies, and mutual house and facility construction.


Author(s):  
S. Khanin ◽  
N. Kikin ◽  
O. Mordovskaya

Paddle mixers with horizontal shafts are common at building materials enterprises for the preparation of concretes, mortars, dry mortars. A new design of a horizontal paddle mixer with rod elements located in front of the working surfaces of the blades, changing the trajectories of material particles, increasing their mobility, which leads to an increase in the degree of homogeneity of the mixed material, is considered. The aim of the study was to assess the influence of rod elements on the quality of preparation of a cement-sand mixture, to establish patterns of influence on it by the design and technological parameters of a two-shaft paddle mixer and to determine the areas of their rational values. The following tasks have been solved. A bench installation of a two-shaft horizontal paddle mixer with rod elements has been developed, on which experimental studies have been carried out on the preparation of dry cement-sand mixtures. For the criterion characterizing the quality of the mixture, the ultimate compressive strength of the prism specimens made from it is adopted. Regression equations are obtained that adequately describe the compressive strength of prism samples from the design and technological parameters of the mixer: the angle of the blades, the distance from the working surfaces of the blades to the rod elements, the rotational speed of the blade shafts, and their analysis is performed. The analysis of the change in the ultimate compressive strength of the prism specimens from the parameters under study is carried out, the rational ranges of their values are determined. It was found that a mixer with rod elements allows to obtain a dry cement-sand mixture, products from which have a higher compressive strength. During the work, the method of mathematical planning of experiments was used. As a result of the study, an assessment of the influence of rod elements on the quality of preparation of a cement-sand mixture was carried out, the regularities of the influence on it of the design and technological parameters of a two-shaft paddle mixer and the area of their rational values were established.


Author(s):  
Lawrence Echefulechukwu Obi

This work was necessitated by the observations made at construction sites where artisans and craftsmen were left alone in concrete production. It was discovered that they used inadequate quantity and size of coarse aggregates due to difficulty associated in the mixing as if the coarse aggregates were not needed in concrete production. The research has established that the coarse aggregates and their sizes play critical roles in the development of adequate strength in concrete. It was observed that with proper mixing, the slump test results did not witness shear or collapse type of slump rather there were true slump in all cases of the test. The workability decreased with slight differences when the coarse aggregate size was increased. The increase in the coarse aggregates yielded appreciable increase in the compressive strength. It can therefore be inferred that the quality of concrete in terms of strength can be enhanced through an increase in the coarse aggregate size when proper mix ratio, batching, mixing, transporting, placing and finishings are employed in concrete productions.


Author(s):  
Mauricio H. Cornejo ◽  
Jan Elsen ◽  
Bolivar Togra ◽  
Haci Baykara ◽  
Guillermo Soriano ◽  
...  

Mordenite-rich tuff is one of most available zeolitic rocks all over the world. Because of this, the research of natural mordenite as a raw material of geopolymeric materials can provide an almost unlimited source of solid precursor for manufacturing such building materials. Despite efforts to shed light on the behaviour of mordenite-rich tuff during geopolymeric reaction, the performance of these novel materials is barely understood. The aim of this study is to explore the effect of the content of calcium hydroxide, CH, and water-to-solid ratio, W/S, as mixing parameters on compressive strength of mordenite-based geopolymers, MBG, and its thermal conductivity. As solid precursor was used mordenite-rich tuff and mixed with sodium hydroxide (NaOH) at 10M that kept constant during the experiment. Two experimental parameters were selected as independent variables i.e, the content of CH and water-to-solid ratio, and their levels, according to a central composite experimental design. All these designed mixes were characterized by using quantitative X-ray diffraction (QXRD), Fourier Transform Infrared spectroscopy (FTIR), Thermogravimetry and differential scanning calorimetry (TGA-DSC), scanning electron microscopy coupled with energy dispersed spectroscopy (SEM-EDS), in addition thermal conductivity tests were also run according to standard method ASTM C177 at 9, 24, 39°C. The overall results suggested that MBG can be used as building material, however its thermal conductivity was higher than that of commercial isolate building material. The experimental design analysis indicated that the optimum water-to-solid ratio was 0.35, but in the case of the content of CH, the optimum value was not observed on this experimental range because the compressive strength increased as the content of CH increased as well. The compressive strength of MBG was observed in the range between 8.7 and 11.3 MPa. On the other hand, QXRD and FTIR showed that mordenite reacted during the geopolymeric reaction, but instead quartz, also found in zeolitic tuff, acted as inert filler.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Hartati Kapita ◽  
Elfira Resti Mulya

The use of bamboo as building materials has occurred for a long period, especially in a simple construction system. Bamboo can be utilized as a building material due to its advantages. One of the advantages is that bamboo has a significantly low density so  it can reduce the density of concrete whose main material is gravel. Gravel is a natural building material is formed from unconsolidated rock fragments, such as rock pieces or small rocks. Gravel is commonly found in Indonesia because there is a lot of availability. This research aims to utilize local bamboo resources as building materials. Bamboo is used as an alternative substitute for gravel aggregate in the concrete mixing. The research method was experimental laboratory work. The results showed that the use of bamboo as an aggregate can only be used in non-structures, this is because the rate  of absorption of bamboo against water is quite high. While the compressive strength of the concrete produced by  mixing 100 % bamboo aggregate has an average value of 3.09 MPa and mixing 50 % of bamboo has an average value of 6.01 MPa. Therefore, the quality of the concrete cannot be used for building structures, but  only be used in non-structural buildings.


Sign in / Sign up

Export Citation Format

Share Document