scholarly journals Discovery and Full Genome Characterization of SARS-CoV-2 in Stool Specimen from a Recovered Patient, China

2021 ◽  
Vol 70 (3) ◽  
pp. 401-404
Author(s):  
YONGDONG LI ◽  
YI CHEN ◽  
HONGXIA NI ◽  
BO YI ◽  
DANDAN ZHANG ◽  
...  

SARS-CoV-2 was found in a recovered patient’s stool specimen by combining quantitative reverse transcription PCR (qRT-PCR) and genome sequencing. The patient was virus positive in stool specimens for at least an additional 15 days after he was recovered, whereas respiratory tract specimens were negative. The discovery of the complete genome of SARS-CoV-2 in the stool sample of the recovered patient demonstrates a cautionary warning that the potential mode of the virus transmission cannot be excluded through the fecal-oral route after viral clearance in the respiratory tract.

Author(s):  
Amanda K. Debes ◽  
Shaoming Xiao ◽  
Jie Liu ◽  
Allison Shaffer ◽  
Paul Scalzo ◽  
...  

BACKGROUND: Diarrhea is a leading cause of death in children under five. Molecular methods exist for the rapid detection of enteric pathogens; however, the logistical costs of storing stool specimens limit applicability. We sought to demonstrate that dried filter paper specimen preservation can identify diarrheal diseases causing significant morbidity among children in resource constrained countries. METHODS: A sub-study was nested into cholera surveillance in Cameroon. Enrollment criteria included: enrollment between 8/1/16 - 10/1/18; age < 18 years; a stool specimen; ≥ three loose stools within 24hours with the presence of dehydration and/or blood. 7227 persons were enrolled, for which 2746 met enrollment criteria and 337 were included in this analysis using the enteric TaqMan Array Card. Bacterial pathogens were compared to severity of diarrhea, age and sex, among other variables. RESULTS: 107 were ETEC positive of which: 40.2% (N=43) LT-STh, 19.6% (N=21) LT-STp; and 49.5% (53) LT-only. Major CFs were present in 43.9% of ETEC-positives. 96 were positive for Shigella, of which 14 (14.6%) reported dysentery. Model-derived quantitative cutoffs identified 116 (34.4%) with one highly diarrhea-associated pathogen and 16 (4.7%) with ≥ two. Shigellae and rotavirus were most strongly associated with diarrhea in children with mixed infections. CONCLUSION: Dried filter paper preserved specimens eliminate the need for frozen stool specimens and will facilitate enteric surveillance and contribute to the understanding of disease burden, which is needed to guide vaccine development and introduction. This study confirms Rotavirus, Shigella and ETEC as major contributors to pediatric diarrheal disease in two regions of Cameroon.


2020 ◽  
Vol 110 (1) ◽  
pp. 106-120 ◽  
Author(s):  
Avijit Roy ◽  
Andrew L. Stone ◽  
Gabriel Otero-Colina ◽  
Gang Wei ◽  
Ronald H. Brlansky ◽  
...  

The genus Dichorhavirus contains viruses with bipartite, negative-sense, single-stranded RNA genomes that are transmitted by flat mites to hosts that include orchids, coffee, the genus Clerodendrum, and citrus. A dichorhavirus infecting citrus in Mexico is classified as a citrus strain of orchid fleck virus (OFV-Cit). We previously used RNA sequencing technologies on OFV-Cit samples from Mexico to develop an OFV-Cit–specific reverse transcription PCR (RT-PCR) assay. During assay validation, OFV-Cit–specific RT-PCR failed to produce an amplicon from some samples with clear symptoms of OFV-Cit. Characterization of this virus revealed that dichorhavirus-like particles were found in the nucleus. High-throughput sequencing of small RNAs from these citrus plants revealed a novel citrus strain of OFV, OFV-Cit2. Sequence comparisons with known orchid and citrus strains of OFV showed variation in the protein products encoded by genome segment 1 (RNA1). Strains of OFV clustered together based on host of origin, whether orchid or citrus, and were clearly separated from other dichorhaviruses described from infected citrus in Brazil. The variation in RNA1 between the original (now OFV-Cit1) and the new (OFV-Cit2) strain was not observed with genome segment 2 (RNA2), but instead, a common RNA2 molecule was shared among strains of OFV-Cit1 and -Cit2, a situation strikingly similar to OFV infecting orchids. We also collected mites at the affected groves, identified them as Brevipalpus californicus sensu stricto, and confirmed that they were infected by OFV-Cit1 or with both OFV-Cit1 and -Cit2. OFV-Cit1 and -Cit2 have coexisted at the same site in Toliman, Queretaro, Mexico since 2012. OFV strain-specific diagnostic tests were developed.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Mao ◽  
Tianmei Li ◽  
Di Fan ◽  
Hongli Zhou ◽  
Jianguo Feng ◽  
...  

Abstract Background Recent studies have shown that circular RNA (circRNA) is rich in microRNA (miRNA) binding sites. We have previously demonstrated that the antidepressant effect of ketamine is related to the abnormal expression of various miRNAs in the brain. This study determined the expression profile of circRNAs in the hippocampus of rats treated with ketamine. Methods The aberrantly expressed circRNAs in rat hippocampus after ketamine injection were analyzed by microarray chip, and we further validated these circRNAs by quantitative reverse-transcription PCR (qRT-PCR). The target genes of the different circRNAs were predicted using bioinformatic analyses, and the functions and signal pathways of these target genes were investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Results Microarray analysis showed that five circRNAs were aberrantly expressed in rat hippocampus after ketamine injection (fold change > 2.0, p < 0.05). The results from the qRT-PCR showed that one of the circRNAs was significantly increased (rno_circRNA_014900; fold change = 2.37; p = 0.03), while one was significantly reduced (rno_circRNA_005442; fold change = 0.37; p = 0.01). We discovered a significant enrichment in several GO terms and pathways associated with depression. Conclusion Our findings showed the abnormal expression of ketamine-induced hippocampal circRNAs in rats.


2020 ◽  
Vol 401 (10) ◽  
pp. 1153-1165 ◽  
Author(s):  
Antônio F. da Silva Filho ◽  
Lucas B. Tavares ◽  
Maira G. R. Pitta ◽  
Eduardo I. C. Beltrão ◽  
Moacyr J. B. M. Rêgo

AbstractPancreatic ductal adenocarcinoma is one of the most aggressive tumors with a microenvironment marked by hypoxia and starvation. Galectin-3 has been evaluated in solid tumors and seems to present both pro/anti-tumor effects. So, this study aims to characterize the expression of Galectin-3 from pancreatic tumor cells and analyze its influence for cell survive and motility in mimetic microenvironment. For this, cell cycle and cell death were accessed through flow cytometry. Characterization of inside and outside Galectin-3 was performed through Real-Time Quantitative Reverse Transcription PCR (qRT-PCR), immunofluorescence, Western blot, and ELISA. Consequences of Galectin-3 extracellular inhibition were investigated using cell death and scratch assays. PANC-1 showed increased Galectin-3 mRNA expression when cultivated in hypoxia for 24 and 48 h. After 24 h in simultaneously hypoxic/deprived incubation, PANC-1 shows increased Galectin-3 protein and secreted levels. For Mia PaCa-2, cultivation in deprivation was determinant for the increasing in Galectin-3 mRNA expression. When cultivated in simultaneously hypoxic/deprived condition, Mia PaCa-2 also presented increasing for the Galectin-3 secreted levels. Treatment of PANC-1 cells with lactose increased the death rate when cells were incubated simultaneously hypoxic/deprived condition. Therefore, it is possible to conclude that the microenvironmental conditions modulate the Galectin-3 expression on the transcriptional and translational levels for pancreatic cancer cells.


2007 ◽  
Vol 408 (3) ◽  
pp. 395-406 ◽  
Author(s):  
Marta Manzoni ◽  
Paolo Colombi ◽  
Nadia Papini ◽  
Luana Rubaga ◽  
Natascia Tiso ◽  
...  

Sialidases remove sialic acid residues from various sialo-derivatives. To gain further insights into the biological roles of sialidases in vertebrates, we exploited zebrafish (Danio rerio) as an animal model. A zebrafish transcriptome- and genome-wide search using the sequences of the human NEU polypeptides as templates revealed the presence of seven different genes related to human sialidases. neu1 and neu4 are the putative orthologues of the mammalian sialidases NEU1 and NEU4 respectively. Interestingly, the remaining genes are organized in clusters located on chromosome 21 and are all more closely related to mammalian sialidase NEU3. They were thus named neu3.1, neu3.2, neu3.3, neu3.4 and neu3.5. Using RT–PCR (reverse transcription–PCR) we detected transcripts for all genes, apart from neu3.4, and whole-mount in situ hybridization experiments show a localized expression pattern in gut and lens for neu3.1 and neu4 respectively. Transfection experiments in COS7 (monkey kidney) cells demonstrate that Neu3.1, Neu3.2, Neu3.3 and Neu4 zebrafish proteins are sialidase enzymes. Neu3.1, Neu3.3 and Neu4 are membrane-associated and show a very acidic pH optimum below 3.0, whereas Neu3.2 is a soluble sialidase with a pH optimum of 5.6. These results were further confirmed by subcellular localization studies carried out using immunofluorescence. Moreover, expression in COS7 cells of these novel zebrafish sialidases (with the exception of Neu3.2) induces a significant modification of the ganglioside pattern, consistent with the results obtained with membrane-associated mammalian sialidases. Overall, the redundancy of sialidases together with their expression profile and their activity exerted on gangliosides of living cells indicate the biological relevance of this class of enzymes in zebrafish.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Thanyarat Chaibun ◽  
Jiratchaya Puenpa ◽  
Tatchanun Ngamdee ◽  
Nimaradee Boonapatcharoen ◽  
Pornpat Athamanolap ◽  
...  

AbstractCoronavirus disease 2019 (COVID-19) is a highly contagious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Diagnosis of COVID-19 depends on quantitative reverse transcription PCR (qRT-PCR), which is time-consuming and requires expensive instrumentation. Here, we report an ultrasensitive electrochemical biosensor based on isothermal rolling circle amplification (RCA) for rapid detection of SARS-CoV-2. The assay involves the hybridization of the RCA amplicons with probes that were functionalized with redox active labels that are detectable by an electrochemical biosensor. The one-step sandwich hybridization assay could detect as low as 1 copy/μL of N and S genes, in less than 2 h. Sensor evaluation with 106 clinical samples, including 41 SARS-CoV-2 positive and 9 samples positive for other respiratory viruses, gave a 100% concordance result with qRT-PCR, with complete correlation between the biosensor current signals and quantitation cycle (Cq) values. In summary, this biosensor could be used as an on-site, real-time diagnostic test for COVID-19.


Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 543
Author(s):  
Tamiko Hisanaga ◽  
Catherine Soos ◽  
Nicola Lewis ◽  
Oliver Lung ◽  
Matthew Suderman ◽  
...  

We describe for the first time the genetic and antigenic characterization of 18 avian avulavirus type-6 viruses (AAvV-6) that were isolated from wild waterfowl in the Americas over the span of 12 years. Only one of the AAvV-6 viruses isolated failed to hemagglutinate chicken red blood cells. We were able to obtain full genome sequences of 16 and 2 fusion gene sequences from the remaining 2 isolates. This is more than double the number of full genome sequences available at the NCBI database. These AAvV-6 viruses phylogenetically grouped into the 2 existing AAvV-6 genotype subgroups indicating the existence of an intercontinental epidemiological link with other AAvV-6 viruses isolated from migratory waterfowl from different Eurasian countries. Antigenic maps made using HI assay data for these isolates showed that the two genetic groups were also antigenically distinct. An isolate representing each genotype was inoculated in specific pathogen free (SPF) chickens, however, no clinical symptoms were observed. A duplex fusion gene based real-time assay for the detection and genotyping of AAvV-6 to genotype 1 and 2 was developed. Using the developed assay, the viral shedding pattern in the infected chickens was examined. The chickens infected with both genotypes were able to shed the virus orally for about a week, however, no significant cloacal shedding was detected in chickens of both groups. Chickens in both groups developed detectable levels of anti-hemagglutinin antibodies 7 days after infection.


2013 ◽  
Vol 94 (10) ◽  
pp. 2184-2190 ◽  
Author(s):  
Susanna K. P. Lau ◽  
Patrick C. Y. Woo ◽  
Ying Wu ◽  
Annette Y. P. Wong ◽  
Beatrice H. L. Wong ◽  
...  

We describe the discovery and characterization of a novel paramyxovirus, porcine parainfluenza virus 1 (PPIV-1), from swine. The virus was detected in 12 (3.1 %) of 386 nasopharyngeal and two (0.7 %) of 303 rectal swab samples from 386 deceased pigs by reverse transcription-PCR, with viral loads of up to 106 copies ml−1. Complete genome sequencing and phylogenetic analysis showed that PPIV-1 represented a novel paramyxovirus within the genus Respirovirus, being most closely related to human parainfluenza virus 1 (HPIV-1) and Sendai virus (SeV). In contrast to HPIV-1, PPIV-1 possessed a mRNA editing function in the phosphoprotein gene. Moreover, PPIV-1 was unique among respiroviruses in having two G residues instead of three to five G residues following the A6 run at the editing site. Nevertheless, PPIV-1, HPIV-1 and SeV share common genomic features and may belong to a separate group within the genus Respirovirus. The presence of PPIV-1 in mainly respiratory samples suggests a possible association with respiratory disease, similar to HPIV-1 and SeV.


Sign in / Sign up

Export Citation Format

Share Document