scholarly journals Optimization of Keratinase Production Using Pseudomonas aeruginosa SU-1 Having Feather as Substrate

2020 ◽  
Vol 10 (5) ◽  
pp. 6540-6549

In this optimization study, Pseudomonas aeruginosa SU-1 was producing keratinase at optimal condition of 4 days, pH – 7 and temperature 37 0C, where it was producing 23.7 U/mL After the one factor at a time, RSM was performed to understand the combination of the physical parameter that ends up for the maximum production of keratinase enzyme and the degradation percentage. The study involved in three variables (pH(A), temperature(B) and Incubation Design (C)) in three ranges (-1,0,+1) using Box-Behnken Design (BBD). The results of the analysis of variance and regression analysis of the second order model showed that the factorial effect if the degradation. The optima of the variables pH - 7, temperature - 30 and incubation time – 4 days. The isolated Pseudomonas species was subjected to feather degradation for 4 days and it was degrading 55.26 %. Keratinase was to be size of 56KDa.

2020 ◽  
Vol 2 (1) ◽  
pp. 5

Soil samples were collected from the feather dumped area, and they were screened for the presence of keratinolytic bacteria Bacillus pumilus. Based on its growth on Bacillus isolation agar, Skim milk agar, and Starch agar, it was conformed as Bacillus pumilus. The growth of bacteria was estimated by biomass estimation. In the optimization study, the optimum incubation period observed for feather degradation was 48hrs, pH 7, and temperature 40°C. Purified Keratinase enzyme was used for the feather degradation study. The maximum degradation observed was 29% at the temperature of 400C. The size of kerinase produced was estimated as 52KDa.


2019 ◽  
Vol 9 (01) ◽  
pp. 46-50
Author(s):  
Ashwak B Al-Hashimy ◽  
Huda S Alagely ◽  
Akeel K Albuaji ◽  
Khalid R Majeed

The present study included the collection of 100 samples from various clinical sources for investigating the presence of P. aeruginosa in those sources, the samples have been collected from some hospitals in Baghdad and Hillah city (Al-qassim General Hospital, ,Al-hillah teaching hospital,and Al-hashimya General hospital ) which included wounds, burns, ear and sputum infections. The study was carried out through October 2017 till the end of March 2018. The samples were identified based on the morphological and microscopically characteristics of the colonies when they were culturing or number of culture media as well as biochemical tests, molecular identification were also used as a final diagnostic test for isolates that were positive as they belong to P.aeruginosa bacteria during previous tests based on the OprD gene which has specific sequences for P.aeruginosa bacteria as a detection gene and also consider as virulence factor so it have a synonyms mechanism to antibiotic resistance . The results of the final diagnosis showed that 38 isolates belong to target bacteria were distributed as 18 of burns, 11 isolates of wounds, 6 isolates of ear infection and 3 isolates of sputum, The examination of the sensitivity of all bacterial isolates was done for elected 38 isolation towards the 9 antibiotic by a Bauer - Kirby and the isolates were resistant for a number of antibiotics used such as Ciprofloxacin 65.7%, Norflaxacin 71%, Imipenem 63.1% Meropenem 68.4%, Gentamicin 65.7%, Amikacin 26.3%, Cefepime 68.4%, Ceftazidime 65.7% and Piperacillin 57.8%.Molecular method , All isolates (38) of P. aeruginosa positive for the diagnostic special gene (OprD) genes (100%).


Author(s):  
J. Marconi ◽  
P. Tiso ◽  
D. E. Quadrelli ◽  
F. Braghin

AbstractWe present an enhanced version of the parametric nonlinear reduced-order model for shape imperfections in structural dynamics we studied in a previous work. In this model, the total displacement is split between the one due to the presence of a shape defect and the one due to the motion of the structure. This allows to expand the two fields independently using different bases. The defected geometry is described by some user-defined displacement fields which can be embedded in the strain formulation. This way, a polynomial function of both the defect field and actual displacement field provides the nonlinear internal elastic forces. The latter can be thus expressed using tensors, and owning the reduction in size of the model given by a Galerkin projection, high simulation speedups can be achieved. We show that the adopted deformation framework, exploiting Neumann expansion in the definition of the strains, leads to better accuracy as compared to the previous work. Two numerical examples of a clamped beam and a MEMS gyroscope finally demonstrate the benefits of the method in terms of speed and increased accuracy.


Microbiology ◽  
2009 ◽  
Vol 155 (4) ◽  
pp. 1080-1092 ◽  
Author(s):  
A. A. Bartosik ◽  
J. Mierzejewska ◽  
C. M. Thomas ◽  
G. Jagura-Burdzy

Deletions leading to complete or partial removal of ParB were introduced into the Pseudomonas aeruginosa chromosome. Fluorescence microscopy of fixed cells showed that ParB mutants lacking the C-terminal domain or HTH motif formed multiple, less intense foci scattered irregularly, in contrast to the one to four ParB foci per cell symmetrically distributed in wild-type P. aeruginosa. All parB mutations affected both bacterial growth and swarming and swimming motilities, and increased the production of anucleate cells. Similar effects were observed after inactivation of parA of P. aeruginosa. As complete loss of ParA destabilized its partner ParB it was unclear deficiency of which protein is responsible for the mutant phenotypes. Analysis of four parB mutants showed that complete loss of ParB destabilized ParA whereas three mutants that retained the N-terminal 90 aa of ParB did not. As all four parB mutants demonstrate the same defects it can be concluded that either ParB, or ParA and ParB in combination, plays an important role in nucleoid distribution, growth and motility in P. aeruginosa.


2020 ◽  
Vol 4 (1) ◽  
pp. 58-69
Author(s):  
Babatide Olufemi Oladapo ◽  
Esther Aanuoluwa Ekundayo ◽  
Mariam Olukemi Mokoolu ◽  
Fatuyi Olanipekun Ekundayo

Abstract Insecticides are used widely to control a variety of pests and often residues of these insecticides are left in soil which may have impact on the phosphate solubilization potentials of rhizosphere fungi. Rhizosphere soils were collected from carefully uprooted cowpea seedlings with hand trowel on 50, 70 and 90th days of germination containing the lambda-cyhalothrin and dimethoate insecticides. Fungi associated with the above samples were identified by standard microbiological techniques. Screening for phosphate solubilization potential of the isolates was done by spot inoculation on Pikovskaya agar by measuring the clear zones around the colonies supplemented with tricalcium phosphates [Ca3(PO4)2]. The phosphatase produced by the fungal species was optimized using parameters such as incubation time, pH, temperature, carbon source and nitrogen source in submerged fermentation. The isolated rhizosphere fungi were identified as Rhizopus stolonifer, Aspergillus niger, Aspergillus fumigatus, Aspergillus terreus, Trichoderma viride, Arthroderma fulvum and Fusarium oxysporum. Among the isolates, Trichoderma viride showed the best ability to solubilize phosphate with solubilization index of 2.82 with dimethoate of 12.5ml/L of water. The optimization study for the enzyme production showed that the best incubation time for phosphatase production was 72 hours by Trichoderma viride. It was observed that the optimum pH for production of phosphatase by Trichoderma viride was 6.5. This study suggests that all the isolated fungi especially Trichoderma viride can adapt to these insecticidal treatments, which make them useful as biofertilizers to increase uptake of phosphorous in plants.


2012 ◽  
Vol 32 (1) ◽  
pp. 142-150 ◽  
Author(s):  
Danila Soares Caixeta ◽  
Thiago Henrique Scarpa ◽  
Danilo Florisvaldo Brugnera ◽  
Dieyckson Osvani Freire ◽  
Eduardo Alves ◽  
...  

The biofilm formation of Pseudomonas aeruginosa and Pseudomonas fluorescens on AISI 304 stainless steel in the presence of reconstituted skim milk under different temperatures was conducted, and the potential of three chemical sanitizers in removing the mono-species biofilms formed was compared. Pseudomonas aeruginosa cultivated in skim milk at 28 °C presented better growth rate (10.4 log CFU.mL-1) when compared with 3.7 and 4.2 log CFU.mL-1 for P. aeruginosa and P. fluorescens cultivated at 7 °C, respectively. Pseudomonas aeruginosa formed biofilm when cultivated at 28 °C. However, only the adhesion of P. aeruginosa and P. fluorescens was observed when incubated at 7 °C. The sodium dichloroisocyanurate was the most efficient sanitizer in the reduction of the adhered P. aeruginosa cells at 7 and 28 °C and those on the biofilm, respectively. The hydrogen peroxide was more effective in the reduction of adhered cells of P. fluorescens at 7 °C.


2018 ◽  
Vol 5 (11) ◽  
Author(s):  
Jason C Gallagher ◽  
Michael J Satlin ◽  
Abdulrahman Elabor ◽  
Nidhi Saraiya ◽  
Erin K McCreary ◽  
...  

Abstract Background Multidrug-resistant Pseudomonas aeruginosa infections remain common in hospitals worldwide. We investigated the outcomes associated with the use of ceftolozane-tazobactam for the treatment of these infections. Methods Data were collected retrospectively from 20 hospitals across the United States about adults who received ceftolozane-tazobactam for the treatment of multidrug-resistant P aeruginosa infections of any source for at least 24 hours. The primary outcome was a composite of 30-day and inpatient mortality, and secondary outcomes were clinical success and microbiological cure. Multivariable regression analysis was conducted to determine factors associated with outcomes. Results Two-hundred five patients were included in the study. Severe illness and high degrees of comorbidity were common, with median Acute Physiology and Chronic Health Evaluation (APACHE) II scores of 19 (interquartile range [IQR], 11–24) and median Charlson Comorbidity Indexes of 4 (IQR, 3–6). Delayed initiation of ceftolozane-tazobactam was common with therapy started a median of 9 days after culture collection. Fifty-nine percent of patients had pneumonia. On susceptibility testing, 125 of 139 (89.9%) isolates were susceptible to ceftolozane-tazobactam. Mortality occurred in 39 patients (19%); clinical success and microbiological cure were 151 (73.7%) and 145 (70.7%), respectively. On multivariable regression analysis, starting ceftolozane-tazobactam within 4 days of culture collection was associated with survival (adjusted odds ratio [OR], 5.55; 95% confidence interval [CI], 2.14–14.40), clinical success (adjusted OR, 2.93; 95% CI, 1.40–6.10), and microbiological cure (adjusted OR, 2.59; 95% CI, 1.24–5.38). Conclusions Ceftolozane-tazobactam appeared to be effective in the treatment of multidrug-resistant P aeruginosa infections, particularly when initiated early after the onset of infection.


2021 ◽  
Author(s):  
Saugat Prajapati ◽  
Sushil Koirala ◽  
Anil Kumar Anal

Abstract In this study, a novel feather-degrading bacteria B. amyloliquefaciens KB1 was isolated from chicken farm bed (CFB), identified by morphological, physico-biochemical tests followed by 16s rDNA analysis. Among observed isolates, bacterial isolate (KB1) showed the highest degree of feather degradation (74.78 ± 2.94 %) and total soluble protein (205 ± 0.03 mg/ g). Using the same species of bacteria, the optimum fermentation condition was found at 40 oC, pH 9, and 1 % (w/v) feather concentration that produced 260 mg/ g of soluble protein and 86.16 % feather degradation using response surface methodology in a Box-Behnken design space. The obtained hydrolysates exhibited bioactive properties. The amino acid profile showed the increase in concentration of essential amino acid compared with feather meal broth. The selection of safe screening source of this new bacteria in CFB produced hydrolysates with enhanced bioactivity applicable for food, feed, and cosmetic applications along with environmental remediation.


2008 ◽  
Vol 147 (3) ◽  
pp. 225-240 ◽  
Author(s):  
M. S. DHANOA ◽  
S. LÓPEZ ◽  
R. SANDERSON ◽  
J. FRANCE

SUMMARYIn the present paper, a simplified procedure using few in situ data points is derived and then evaluated (using a large database) against reference values estimated with the standard nylon bag first-order kinetics model. The procedure proposed involved a two-stage mathematical process, with a statistical prediction of some degradation parameters (such as lag time) and then a kinetic model derived by assuming degradation follows zero-order kinetics to determine effective degradability in the rumen (E). In addition to the estimation of washout fraction and discrete lag, which is common to both procedures, the simplified procedure requires measurement of dry matter losses at one incubation time point only. Thus, interference of the animal rumen will be much reduced, which will lead to increased capacity for feed evaluation. Calibration of the zero-order model against the first-order model showed that suitable estimates of E can be obtained with disappearance at 24, 48 or 72 h as the single incubation end time point. The strength of the calibration is such that an end incubation time point as low as 24 h may be sufficient, which may reduce substantially the total incubation time required and thus the impact on the experimental animal. Relevant regression equations to predict reference values of parameters such as lag time or E are also developed and validated.


Author(s):  
Mariana Carreira Geralde ◽  
Thaila Quatrini Correa ◽  
Jose Dirceu Vollet-Filho ◽  
Cristina Kurachi ◽  
Vanderlei Salvador Bagnato ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document