scholarly journals Antibacterial Properties of Quinoline Derivatives: A Mini-Review

2021 ◽  
Vol 12 (5) ◽  
pp. 6078-6092

Antibacterial resistance plays a serious risk to human health throughout the globe. Various labors have been adopted to fight this resistance, so it is essential to design and synthesize new agents for the treatment of multi-resistance pathogens. Quinolines and their derivatives are used as antibacterial properties against various gram-positive and negative bacteria. In this mini-review, wish to report the antibacterial properties of quinoline derivatives against various pathogens in the years 2019 and 2020.

2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


2021 ◽  
pp. 088532822110044
Author(s):  
Haiyang Wang ◽  
Toshinari Maeda ◽  
Toshiki Miyazaki

Bone cement based on poly(methyl methacrylate) (PMMA) powder and methyl methacrylate (MMA) liquid is a very popular biomaterial used for the fixation of artificial joints. However, there is a risk of this cement loosening from bone because of a lack of bone-bonding bioactivity. Apatite formation in the body environment is a prerequisite for cement bioactivity. Additionally, suppression of infection during implantation is required for bone cements to be successfully introduced into the human body. In this study, we modified PMMA cement with γ-methacryloxypropyltrimetoxysilane and calcium acetate to introduce bioactive properties and 2-( tert-butylamino)ethyl methacrylate (TBAEMA) to provide antibacterial properties. The long-term antibacterial activity is attributed to the copolymerization of TBAEMA and MMA. As the TBAEMA content increased, the setting time increased and the compressive strength decreased. After soaking in simulated body fluid, an apatite layer was detected within 7 days, irrespective of the TBAEMA content. The cement showed better antibacterial activity against Gram-negative E. Coli than Gram-positive bacteria; however, of the Gram-positive bacteria investigated, B. subtilis was more susceptible than S. aureus.


Dose-Response ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 155932582110113
Author(s):  
Pamela Nair Silva-Holguín ◽  
Simón Yobanny Reyes-López

Researchers are currently looking for materials that are stable, functional, aesthetic, and biocompatible without infections. Therefore, there is a great interest in obtaining a material that has a balance between aesthetic, biological, mechanical, and functional factors, which can be used as an infection control material. The addition of hydroxyapatite to alumina make highly bioactive scaffolds with mechanical strength. Biomedical applications require antibacterial properties; therefore, this idea leads to great interest in the development of new synthetic routes of ceramic biomaterials that allow the release of nanoparticles or metal ions. This investigation presents the obtention of alumina-hydroxyapatite spheres doped with silver nanoparticles with antibacterial effect against various Gram-positive and negative bacteria related to drug-resistance infections. The microstructural and spectroscopic studies demonstrate that the spheres exhibit a homogeneous structure and crystal hydroxyapatite and silver nanoparticles are observed on the surface. The antimicrobial susceptibility was verified with the agar diffusion and turbidimetry methods in Gram-negative ( Escherichia coli and Pseudomonas aeruginosa) and Gram-positive ( Staphylococcus aureus and Bacillus subtilis) bacteria. All bacteria used were susceptible to the alumina-hydroxyapatite-silver spheres even at lower silver concentration. The composites have a higher possibility for medical applications focused on the control of drug-resistance microorganisms.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Mohamad Khairil Radzali ◽  
Akmal Hayat Abdul Karim ◽  
Syahida Ahmad ◽  
Wan Zuhainis Saad

This study was undertaken to investigate the antibacterial properties and the mode of actions of crude extract of Aspergillus fumigatus SSH01. Antibacterial properties was observed against Gram-positive pathogens and showed inhibition against Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 6538, methicillin-resistant S. aureus S547 (MRSA) and Listeria monocytogenes L10 with minimum inhibitory concentration (MIC, 0.097- 12.5 mg/ml) and minimum bactericidal concentration (MBC, 0.195 – 25 mg/ml). No surviving cells were detected after 15 h of treatment with the 2MIC of extracts for time-kill assay. Leakage of cellular contents of the treated test pathogens were identified and increased as the concentrations of the extracts increased. The study of morphological surface has shown the bacterial membrane was disrupted and caused loss of viability. This implies the antibacterial effects of A. fumigatus SSH01 extract may serve as the potential antibiotic. 


2021 ◽  
Vol 9 ◽  
Author(s):  
Valentin Duvauchelle ◽  
Chaimae Majdi ◽  
David Bénimélis ◽  
Catherine Dunyach-Remy ◽  
Patrick Meffre ◽  
...  

Infections caused by drug-resistant bacteria are a serious threat to human and global public health. Moreover, in recent years, very few antibiotics have been discovered and developed by pharmaceutical companies. Therefore, there is an urgent need to discover and develop new antibacterial agents to combat multidrug-resistant bacteria. In this study, two novel series of juglone/naphthazarin derivatives (43 compounds) were synthesized and evaluated for their antibacterial properties against various clinical and reference Gram-positive MSSA, clinical Gram-positive MRSA, and clinical and reference Gram-negative bacteria E. coli and P. aeruginosa. These strains are of clinical importance because they belong to ESKAPE pathogens. Compounds 3al, 5ag, and 3bg showed promising activity against clinical and reference MSSA (MIC: 1–8 µg/ml) and good efficacy against clinical MRSA (MIC: 2–8 µg/ml) strains. 5am and 3bm demonstrated better activity on both MSSA (MIC: 0.5 µg/ml) and MRSA (MIC: 2 µg/ml) strains. Their MICs were similar to those of cloxacillin against clinical MRSA strains. The synergistic effects of active compounds 3al, 5ag, 5am, 3bg, and 3bm were evaluated with reference antibiotics, and it was found that the antibiotic combination with 3bm efficiently enhanced the antimicrobial activity. Compound 3bm was found to restore the sensitivity of clinical MRSA to cloxacillin and enhanced the antibacterial activity of vancomycin when they were added together. In the presence of 3bm, the MIC values of vancomycin and cloxacillin were lowered up to 1/16th of the original MIC with an FIC index of 0.313. Moreover, compounds 3al, 5ag, 5am, 3bg, and 3bm did not present hemolytic activity on sheep red blood cells. In silico prediction of ADME profile parameter results for 3bm is promising and encouraging for further development.


2019 ◽  
Vol 142 (1) ◽  
Author(s):  
Khaled S. Al-Athel ◽  
Najat Marraiki ◽  
Abul Fazal M. Arif ◽  
Syed Sohail Akhtar ◽  
Javad Mostaghimi ◽  
...  

In this work, 316L stainless steel samples were coated with copper (Cu) and German silver (Cu 17%Ni 10%Zn) to investigate the relation between their mechanical and antibacterial behaviors. The mechanical and material characteristics of the samples were studied by looking into the microstructure of the surface and the cross-section of the coatings, the surface roughness, and the adhesion strength between the coating layer and the substrate. The antibacterial behavior is then studied against gram-negative Escherichia coli and gram-positive Staphylococcus aureus. Two experiments were conducted to examine the antibacterial behavior. In the first experiment, the coated samples were covered with distilled water, whereas in the second experiment, the samples were tested without being covered with distilled water. The results show that German silver (Cu 17%Ni 10%Zn) had a higher antibacterial rate than copper (Cu) by around 10% for both gram-negative E. coli and gram-positive S. aureus. The reason is because a smoother surface is expected to limit the bacterial adhesion in most cases, and the German silver samples have a lower surface roughness (Ra) due to the higher thermal expansion value of zinc (Zn) compared with copper (Cu). A more in-depth look into the effect of various thickness of the coating with alloying elements (in this case nickel and zinc) on the antibacterial rate would be of great interest.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1445 ◽  
Author(s):  
Emma C.L. Marrs ◽  
Linda Varadi ◽  
Alexandre F. Bedernjak ◽  
Kathryn M. Day ◽  
Mark Gray ◽  
...  

Given the increase in resistance to antibacterial agents, there is an urgent need for the development of new agents with novel modes of action. As an interim solution, it is also prudent to reinvestigate old or abandoned antibacterial compounds to assess their efficacy in the context of widespread resistance to conventional agents. In the 1970s, much work was performed on the development of peptide mimetics, exemplified by the phosphonopeptide, alafosfalin. We investigated the activity of alafosfalin, di-alanyl fosfalin and β-chloro-L-alanyl-β-chloro-L-alanine against 297 bacterial isolates, including carbapenemase-producing Enterobacterales (CPE) (n = 128), methicillin-resistant Staphylococcus aureus (MRSA) (n = 37) and glycopeptide-resistant enterococci (GRE) (n = 43). The interaction of alafosfalin with meropenem was also examined against 20 isolates of CPE. The MIC50 and MIC90 of alafosfalin for CPE were 1 mg/L and 4 mg/L, respectively and alafosfalin acted synergistically when combined with meropenem against 16 of 20 isolates of CPE. Di-alanyl fosfalin showed potent activity against glycopeptide-resistant isolates of Enterococcus faecalis (MIC90; 0.5 mg/L) and Enterococcus faecium (MIC90; 2 mg/L). Alafosfalin was only moderately active against MRSA (MIC90; 8 mg/L), whereas β-chloro-L-alanyl-β-chloro-L-alanine was slightly more active (MIC90; 4 mg/L). This study shows that phosphonopeptides, including alafosfalin, may have a therapeutic role to play in an era of increasing antibacterial resistance.


2016 ◽  
Vol 34 (2) ◽  
pp. 35
Author(s):  
Prayna P. P. Maharaj ◽  
Riteshma Devi ◽  
Surendra Prasad

Fiji is highly populated with plants containing essential oils (EO). The essential oils extracted from the leaves of the selected Fijian leafy plants were screened against two Gram-negative bacteria (Salmonella typhimurium, Pseudomonas aeruginosa) and three Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis and Bacillus subtilis). The agar diffusion method was used to examine the antimicrobial activities of the extracted EO. All the EO tested showed antibacterial properties against one or more strains while none of the EO was active against Pseudomonas aeruginosa. Viburnum lantana (Wayfaring tree), Annona muricata (Soursop), Coleus amboinicus (Spanish thyme) and Cinnamomum zeylancium (Cinnamon) showed good inhibition against both Gram-positive and Gram-negative bacteria and proved as worthy source of antimicrobial agent. These findings will help the Pacific population to use the studied plants leaves as antimicrobial agent.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
José Carlos Vilar Junior ◽  
Daylin Rubio Ribeaux ◽  
Carlos Alberto Alves da Silva ◽  
Galba Maria De Campos-Takaki

This research aims to study the production of chitosan from shrimp shell (Litopenaeus vannamei) of waste origin using two chemical methodologies involving demineralization, deproteinization, and the degree of deacetylation. The evaluation of the quality of chitosan from waste shrimp shells includes parameters for the yield, physical chemistry characteristics by infrared spectroscopy (FT-IR), the degree of deacetylation, and antibacterial activity. The results showed (by Method 1) extraction yields for chitin of 33% and for chitosan of 49% and a 76% degree of deacetylation. Chitosan obtained by Method 2 was more efficient: chitin (36%) and chitosan (63%), with a high degree of deacetylation (81.7%). The antibacterial activity was tested against Gram-negative bacteria (Stenotrophomonas maltophiliaandEnterobacter cloacae) and Gram-positiveBacillus subtilisand the Minimum Inhibitory Concentrations (MIC) and the Minimum Bactericidal Concentration (MBC) were determined. Method 2 showed that extracted chitosan has good antimicrobial potential against Gram-positive and Gram-negative bacteria and that the process is viable.


2000 ◽  
Vol 44 (8) ◽  
pp. 2217-2221 ◽  
Author(s):  
Jennifer S. Daly ◽  
Theodore J. Giehl ◽  
Neal C. Brown ◽  
Chengxin Zhi ◽  
George E. Wright ◽  
...  

ABSTRACT The 6-anilinouracils are novel dGTP analogs that selectively inhibit the replication-specific DNA polymerase III of gram-positive eubacteria. Two specific derivatives, IMAU (6-[3′-iodo-4′-methylanilino]uracil) and EMAU (6-[3′-ethyl-4′-methylanilino]uracil), were substituted with either a hydroxybutyl (HB) or a methoxybutyl (MB) group at their N3 positions to produce four agents: HB-EMAU, MB-EMAU, HB-IMAU, and MB-IMAU. These four new agents inhibited Staphylococcus aureus, coagulase-negative staphylococci, Enterococcus faecalis, and Enterococcus faecium. Time-kill assays and broth dilution testing confirmed bactericidal activity. These anilinouracil derivatives represent a novel class of antimicrobials with promising activities against gram-positive bacteria that are resistant to currently available agents, validating replication-specific DNA polymerase III as a new target for antimicrobial development.


Sign in / Sign up

Export Citation Format

Share Document