scholarly journals Surface Functionalized Halloysite with N-[3-(Trimethoxysilyl)Propyl] Ethylenediamine for Chromium and Nickel Adsorption from Aqueous Solution

2021 ◽  
Vol 12 (6) ◽  
pp. 7205-7213

In this study, -[3-(trimethoxysilyl)propyl] ethylenediamine - modified Indonesian natural halloysite was applied for Cr(III) and Ni(II) adsorption from aqueous solution. The studies include the physicochemical characterization of the synthesized material by using XRD, SEM, gas sorption analyzer, and FTIR analyses. Furthermore, the adsorption experiments were performed at a batch system for investigating the adsorption kinetics and thermodynamic. The results showed no significant changes in either the material crystallinity or specific surface area, but the changes of surface functional groups identified the anchored ammine modifier. Kinetic modeling showed pseudo-second-order model best fitted the experimental data for both adsorbents. Moreover, the thermodynamic studies represented the chemisorption interaction of modified halloysite with the adsorbate since the average adsorption enthalpy values are at 44.3 kJ/mol and 41.70 kJ/mol for Cr(III) and Ni(II), respectively.

2010 ◽  
Vol 156-157 ◽  
pp. 42-45
Author(s):  
Jing Song Wang ◽  
Si Guang Chen ◽  
Zhi Wu Zhou ◽  
Rui Ting Peng

Modified magnetic microspheres were prepared and used to adsorb As ( ) from aqueous solution. The experiments were conducted in a batch system to study the adsorption behavior of As( ) onto these microspheres and the adsorption equilibrium, adsorption isotherm and kinetics were also studied. The experiment results showed that the modified magnetic microspheres are effective to remove As ( ) from aqueous solution, and the percentage removal of As ( ) could reach over 90% at pH 2.0 within 90 min. The pseudo second-order model was found to fit accurately with the experimental data. The adsorption isotherm can be described by Langmuir model.


2021 ◽  
Vol 11 (7) ◽  
pp. 3125
Author(s):  
Candelaria Tejada-Tovar ◽  
Angel Villabona-Ortíz ◽  
Rodrigo Ortega-Toro ◽  
Humberto Mancilla-Bonilla ◽  
Fran Espinoza-León

The raw sawdust of Eucalyptusglobulus Labill was studied as an alternative of residual biomaterial for the adsorption of lead (II) in wastewater, evaluating the effect of pH (3, 4, 5, and 6) in a batch system. From the characterization of the biomaterial, it was found that the biomass has a low ash content, and from the scanning electron microscopy (SEM) microphotographs that it presents a porous morphology with diverse texture and presence of fiber fragments, which describe the heterogeneity of the material. The Fourier transform infrared (FTIR) spectrum showed the presence of functional groups of NHR, OH, COOH, and hydrocarbons, which are part of the structure of lignin, cellulose, hemicellulose, and pectin. From the adsorption experiments, it was obtained that the optimal value of pH 6, reaching a removal percentage of 96% and an adsorption capacity of 4.80 mg/g. The model that better adjusted the kinetics results was the pseudo-second-order model and the Langmuir and Freundlich isothermal models described the adsorption equilibrium; it was found that in the system prevails chemisorption, supported in ion exchange by Pb (II) and the biomass’ functional groups. From the results, eucalyptus sawdust is suggested as a low-cost adsorbent for Pb (II) bioadsorption present in solution.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1437
Author(s):  
Chih Ming Ma ◽  
Bo-Yuan Yang ◽  
Gui-Bing Hong

Hydrogel beads based on the husk of agarwood fruit (HAF)/sodium alginate (SA), and based on the HAF/chitosan (CS) were developed for the removal of the dyes, crystal violet (CV) and reactive blue 4 (RB4), in aqueous solutions, respectively. The effects of the initial pH (2–10) of the dye solution, the adsorbent dosage (0.5–3.5 g/L), and contact time (0–540 min) were investigated in a batch system. The dynamic adsorption behavior of CV and RB4 can be represented well by the pseudo-second-order model and pseudo-first-order model, respectively. In addition, the adsorption isotherm data can be explained by the Langmuir isotherm model. Both hydrogel beads have acceptable adsorption selectivity and reusability for the study of selective adsorption and regeneration. Based on the effectiveness, selectivity, and reusability of these hydrogel beads, they can be treated as potential adsorbents for the removal of dyes in aqueous solutions.


2014 ◽  
Vol 9 (1) ◽  
pp. 166-174 ◽  
Author(s):  
Rajeshwar M. Shrestha ◽  
Margit Varga ◽  
Imre Varga ◽  
Amar P. Yadav ◽  
Bhadra P. Pokharel ◽  
...  

Activated carbons were prepared from Lapsi seed stone by the treatment with H2SO4 and HNO3 for the removal of Ni (II) ions from aqueous solution. Two activated carbon have been prepared from Lapsi seed stones by treating with conc.H2SO4 and a mixture of H2SO4 and HNO3 in the ratio of 1:1 by weight for removal of Ni(II) ions. Chemical characterization of the resultant activated carbons was studied by Fourier Transform Infrared Spectroscopy and Boehm titration which revealed the presence of oxygen containing surface functional groups like carboxyl, lactones and phenols in the carbons. The optimum pH for nickel adsorption is found to be 5. The adsorption data were better fitted with the Langmuir equations than Freundlich adsorption equation to describe the equilibrium isotherms. The maximum adsorption capacity of Ni (II) on the resultant activated carbons was 28.25.8 mg g-1 with H2SO4 and 69.49 mg g-1 with a mixture of H2SO4 and HNO3. The waste material used in the preparation of the activated carbons is inexpensive and readily available. Hence the carbons prepared from Lapsi seed stones can act as potential low cost adsorbents for the removal of Ni (II) from water. DOI: http://dx.doi.org/10.3126/jie.v9i1.10680Journal of the Institute of Engineering, Vol. 9, No. 1, pp. 166–174


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Nguyen Thi Hue ◽  
Nguyen Hoang Tung

Lanthanum has been doped onto the surface of the natural Pyrolusite for simultaneous removal of phosphate and fluoride in aqueous solution. The adsorbent characterization of the materials was observed by the SEM, BET, and XRD techniques. The dynamics and isotherms models of fluoride and phosphate adsorption, with respect to pH, pHPZC, adsorbent dose, and effect of coexisting ions, were studied. The results showed that lanthanum doped Pyrolusite ore (LDPO) relatively highly adsorbed amount of phosphate and fluoride from aqueous solution. Phosphate and fluoride removal efficiencies of LDPO are approximately 97% and 95%, respectively. Pseudo-first order for kinetic studies of phosphate and fluoride removal of the LDPO was observed with high correlations for fluoride but weak correlations for phosphate. However, pseudo-second order for kinetic studies was high correlation for both phosphate and fluoride. The phosphate and fluoride adsorption capacities of the LDPO significantly decreased with the existence of coions (sulfate, chloride, and nitrate) in the aqueous solution.


2018 ◽  
Vol 77 (5) ◽  
pp. 1313-1323 ◽  
Author(s):  
Jianjun Zhou ◽  
Xionghui Ji ◽  
Xiaohui Zhou ◽  
Jialin Ren ◽  
Yaochi Liu

Abstract A novel magnetic bio-adsorbent (MCIA) was developed, characterized and tested for its Cd(II) removal from aqueous solution. MCIA could be easily separated from the solution after equilibrium adsorption due to its super-paramagnetic property. The functional and magnetic bio-material was an attractive adsorbent for the removal of Cd(II) from aqueous solution owing to the abundant adsorption sites, amino-group and oxygen-containing groups on the surface of Cyclosorus interruptus. The experimental results indicated that the MCIA exhibited excellent adsorption ability and the adsorption process was spontaneous and endothermic. The adsorption isotherm was consistent with the Langmuir model. The adsorption kinetic fitted the pseudo-second-order model very well. The maximum adsorption capacity of Cd(II) onto MCIA was 40.8, 49.4, 54.6 and 56.6 mg/g at 293, 303, 313 and 323 K, respectively. And the MCIA exhibited an excellent reusability and impressive regeneration. Therefore, MCIA could serve as a sustainable, efficient and low-cost magnetic adsorbent for Cd(II) removal from aqueous solution.


2019 ◽  
Vol 80 (5) ◽  
pp. 884-891
Author(s):  
Daying Chen ◽  
Nasi Tu ◽  
Changkun Si ◽  
Meilin Yin ◽  
Xiaohui Wang

Abstract Mesoporous TiO2 has been prepared by a brief and simple sol–gel processing and applied for the removal of Cu(II) from aqueous solution. The adsorption behavior of mesoporous TiO2 for Cu(II) was investigated using batch experiments. Results showed that the pseudo-second-order model and Langmuir isotherm were more accurate to describe the kinetics process and adsorption isotherm. Mesoporous TiO2 adsorbent displayed excellent Cu(II) adsorption efficiency (195.52mg g−1). The thermodynamic parameters showed that the adsorption was spontaneous and endothermic. It was also found that mesoporous TiO2 could be used at least seven times without obvious loss of its original adsorption efficiency. Therefore, the obtained mesoporous TiO2 could be employed as an effective and low-cost adsorbent for removal of Cu(II) from contaminated effluents.


2018 ◽  
Vol 10 (12) ◽  
pp. 4440 ◽  
Author(s):  
Maria Boni ◽  
Agostina Chiavola ◽  
Simone Marzeddu

BIOTON® biochar, produced by a wood biomass pyrolysis process, which is usually applied as soil amendment, was investigated for a novel application, i.e., the adsorption of lead from contaminated solutions. The experimental activity included physical and chemical characterization of BIOTON®; and Scanning Electron Microscope (SEM) images to highlight its internal structure. The adsorption process was investigated through batch and column experiments. Adsorption kinetics showed very rapid achievement of equilibrium conditions, i.e., 50 mg/L and 100 mg/L initial Pb concentration at 2 h and 4 h, respectively. Complete removal also occurred within the same time. The Brunauer–Emmett–Teller model was a better fit for the equilibrium data of both Pb concentrations, whereas the kinetics were best represented by the pseudo second-order model. Column tests showed that the addition of biochar as an adsorbent media within the bed significantly extended the time of breakthrough and exhaustion, with respect to the column filled with soil only. The values found for the adsorption capacity of BIOTON®- versus lead-containing solutions were comparable to those reported for commercial adsorbents. Therefore, BIOTON® can be considered a valid option: It also offers the additional benefit of allowing the recovery of a residue, which alternately would need to be disposed of.


Author(s):  
Qingqing Liu ◽  
Xiaoyan Li

The activated MgO was synthesized by microwave homo-precipitator method and characterized by SEM, EDS and FT-IR methods. It was used to adsorption of U(VI) from aqueous solution with batch system. The paper discussed the effect of pH, temperature, contact time, adsorbent dose and initial U(VI) concentration on the adsorption. The results showed that activated MgO has good adsorption capacity for U(VI), the removal rate and equilibrium adsorption capacity reached 83.5% and 84.04mg·g−1 at pH 5.0, 15mg dose and 313K,respectively. The adsorption kinetics of U(VI) onto activated MgO were better fitted with pseudo-second-order kinetic.The adsorption isotherm data were fitted well to Freundlich isotherm model.The thermodynamic parameters showed that the adsorption process is endothermic and spontaneous.


Sign in / Sign up

Export Citation Format

Share Document