scholarly journals Synergic effect of recycled cotton fabric and wood saw dust reinforced biodegradable polypropylene composites

2019 ◽  
Vol 54 (1) ◽  
pp. 21-30 ◽  
Author(s):  
MK Islam ◽  
A Sharif ◽  
M Hussain ◽  
I Hassan

Hybrid polymer matrix composites of waste cotton fabric and wood saw dust reinforcements were studied with a view to recycling the wastes from garments and carpentry industries. Polymer composites with cotton fabric and wood-saw-dust reinforcements were fabricated using hot press machine. Their physical, thermal and mechanical behaviors were discussed in terms of moisture absorption, thermal stability, tensile strength, elastic modulus, flexural strength and flexural modulus. Compositional analyses of fibers, matrix and composites were carried out with FTIR spectroscopy. Experimental results revealed that tensile and flexural strength of the composites increased with cotton fabric reinforcement. On the other hand, with increasing wood saw dust strength decreased up to a certain limit and then increased again. Water absorption of the hybrid composites increased substantially with increasing natural filler contents. Maximum water absorption was observed in 20% fabric/wood-saw-dust reinforced polymer composite. Furthermore, TGA graphs suggest better thermal stability of the hybrid composites than that of pure polypropylene. Bangladesh J. Sci. Ind. Res.54(1), 21-30, 2019

2019 ◽  
pp. 089270571987823 ◽  
Author(s):  
Md RH Mazumder ◽  
F Numera ◽  
A Al-Asif ◽  
M Hasan

Present research investigates the effect of bentonite clay and polypropylene (PP) matrix on the properties of silk and glass fiber hybrid composites. Three types of composite were prepared with 10 wt% silk and fiber at 1:1 ratio using hot press machine. In two composites commercial and recycled PP were used as matrix, while in third composite bentonite clay was added to silk and glass-reinforced commercial PP. Mechanical (tensile, flexural, impact, and hardness) tests, water absorption test, and thermogravimetric analysis were subsequently conducted. Tensile strength, flexural modulus, and hardness decreased, whereas Young’s modulus, impact strength, water absorption, and thermal stability increased with the addition of bentonite clay. On the other hand, change of matrix from commercial PP to recycled PP increased Young’s modulus, flexural strength, impact strength, and thermal stability and decreased tensile strength, flexural modulus, and hardness.


2017 ◽  
Vol 51 (28) ◽  
pp. 3909-3922 ◽  
Author(s):  
Priyadarshi Tapas Ranjan Swain ◽  
Sandhyarani Biswas

The present paper discovers the effect of ceramic filler inclusion on physico-mechanical and water absorption behaviour of untreated and chemically treated (alkali and benzoyl chloride treated) bi-directional jute natural-fiber-reinforced epoxy composites. In practice, the major drawbacks of using natural fibers are their high degree of moisture absorption and poor dimensional stability. Currently, chemical treatments are able to induce fiber modifications that increase their resistance when utilized in composite products. Jute fibers were subjected to various chemical modifications to improve the interfacial bonding with the matrix. In this study, an analysis has been carried out to make pre-treated jute fiber (10, 20, 30 and 40 wt.%) and different filler content (5 and 10 wt.%) with epoxy-based composites. A comparative study of all the untreated jute/aluminium oxide based hybrid composites with chemically treated jute/aluminium oxide based hybrid composites was carried out. The investigational result reveals that chemically treated composites considerably improved the mechanical properties of the composite. The maximum water absorption resistance and strength properties were found with benzoyl chloride-treated fiber-reinforced composite. Lastly, the surface morphology of fractured surfaces after tensile and flexural testing is studied using scanning electron microscope.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Min Yu ◽  
Runzhou Huang ◽  
Chunxia He ◽  
Qinglin Wu ◽  
Xueni Zhao

Reinforcing effect of hybrid filler including wheat straw (WS) and inorganic filler (heavy calcium carbonate, silicon dioxide, and fly ash) in recycled polypropylene (R-PP) has been investigated. The effects of individual filler (WS) and combined fillers (WS and inorganic filler) on morphological, mechanical, and thermal expansion and water absorption properties of hybrid composites were investigated. The flexural modulus and flexural strength were both reduced when reinforced with three kinds of inorganic fillers, respectively, which was possibly due to the poor interphase adhesion as observed in SEM. The high surface energy of heavy calcium carbonate due to its high acidic character provides an opportunity of better PP-heavy calcium carbonate interfacial interactions compared to PP-straw, PP-fly ash, and PP-SiO2interface. The water absorption at saturation increased markedly by introduction of WS in it. The hybrid composites from WS and inorganic fillers showed better water absorption compared to those WS/PP composites. The thermal expansion of composites decreased with the increase of WS loading. Heavy calcium and SiO2can obviously reduce the LCTE value of composite. At the 25% inorganic filler content, composites had the smallest LCTE values.


2013 ◽  
Vol 20 (3) ◽  
pp. 227-232 ◽  
Author(s):  
Behzad Kord

AbstractThe effect of organomodified montmorillonite (OMMT) loading on the natural durability properties of polypropylene/wood flour composites exposed to brown-rot fungi (Coniophora puteana) was studied. To meet this objective, the blend composites were prepared through the melt mixing of polypropylene/wood flour at 50% weight ratios, with various amounts of OMMT (0, 3 and 6 per hundred compounds [phc]) in a hake internal mixer. The samples were then made by injection molding. The amount of coupling agent was fixed at 2 phc for all formulations. After specimen and culture medium preparation, the specimens were exposed to the purified fungus at 25°C and 75% relative humidity for 14 weeks. Identical specimens of the same composite, without being exposed to the fungus, were provided as the control specimens. After the discussed periods; weight loss, flexural strength, flexural modulus, hardness, water absorption, and thickness swelling of specimens were measured. Results indicated that OMMT had significant effects on the natural durability of the studied composite formulations. All mechanical properties were affected by the fungus, to a greater extent in the case of specimens without OMMT than the specimens with OMMT. Furthermore, the flexural strength and modulus increased with an increase of OMMT up to 3 phc and then decreased. However, the impact strength, water absorption and thickness swelling was decreased with increase of OMMT loading. Also, the lowest weight loss and the highest hardness were observed in the composite containing 6 phc organoclay. The morphology of the nanocomposites was examined by using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Morphological findings revealed that intercalation came from the sample with 3 phc concentration of OMMT, which implies the formation of intercalation morphology and better dispersion than 6 phc.


2011 ◽  
Vol 217-218 ◽  
pp. 347-352 ◽  
Author(s):  
Chun Xia He ◽  
Jun Jun Liu ◽  
Pan Fang Xue ◽  
Hong Yan Gu

The influence of the rice husks powder (RHP) content and its particle size distribution on the composite’s tensile strength, fracturing elongation ratio, flexural strength and flexural elastic modulus has been investigated. Respective water absorption and thermal properties of PP composites incorporated with different proportion of RHP have also been analyzed. The microstructure of fractured surfaces was further observed in scanning electron microscopy (SEM). The results showed that the composites with RHP of 245 μm have higher mechanical properties. The tensile strength and fracturing elongation ratio decrease with the increase of RHP content, and reach peak values in 30% RHP content. Water absorption and volume expansion ratio of the composite increase with the increasing of RHP content. Flexural strength and flexural modulus decrease after water absorption. When PHR content is low, the RHP particles are well distributed and the interface of RHP and PP is smooth. When PHR content is higher, the RHP particles tend to agglomerate, leading to poorer interface and lower mechanical properties, the composite failed with brittle fracture.


2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Author(s):  
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.


2020 ◽  
Vol 54 (22) ◽  
pp. 3159-3169 ◽  
Author(s):  
Ezatollah (Nima) Amini ◽  
Mehdi Tajvidi

Utilization of cellulose nanocrystals as an additive in the formulation of biocomposites made with Acrodur® resin is presented. Natural fibers/polyethylene terephthalate mats were impregnated with Acrodur® and hot-pressed into the final thickness of 3 mm after drying. Biocomposites with 2 wt.% and 5 wt.% cellulose nanocrystal (dry-basis) were also produced. The produced biocomposite panels were then tested to determine the flexural strength, flexural modulus and Izod impact strength. The results revealed that adding cellulose nanocrystal to the composite formulation increased flexural modulus significantly up to 970 MPa (17.5% increase) at a panel density of 0.5 g/cm3, while it did not significantly affect flexural strength values. A slight reduction was observed in the impact strength of the samples by adding cellulose nanocrystal. The fractured samples of impact test were observed under a scanning electron microscope. It was shown that in all cases, the fracture happened due to the failure of the fibrous system and in particular natural fibers. Thermal stability of the composites was also investigated using thermo-gravimetric analysis. It was found that adding cellulose nanocrystal slightly reduced the thermal stability of the biocomposites. Potential compatibility of cellulose nanocrystal particles with Acrodur® resin is promising and the improvement in flexural modulus can lead to the design of lighter parts for automotive applications such as door panels, headliners, and underbody shields.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Amuthakkannan Pandian ◽  
Manikandan Vairavan ◽  
Winowlin Jappes Jebbas Thangaiah ◽  
Marimuthu Uthayakumar

The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.


e-Polymers ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 710-721
Author(s):  
Mohammed T. Hayajneh ◽  
Faris M. AL-Oqla ◽  
Mu’ayyad M. Al-Shrida

Abstract In this study, the morphological and mechanical performances of hybrid green organic and inorganic filler composites were investigated. Various hybrid reinforcements using natural waste fillers including lemon leaves and eggshells were utilized for the study. The tensile strength, tensile modulus, elongation to break, flexural strength, and flexural modulus were investigated for the composites with polypropylene matrix. The results revealed that eggshells composites had the best values for both tensile and flexural tests while lemon leaves composites had the lowest values. However, the hybrid filler (lemon leaves-eggshells) had intermediate values. The poor properties of lemon leaves were attributed to the agglomeration and weak bonding presented by the morphological analysis of the hybrid composites.


Author(s):  
Getahun Aklilu ◽  
Sarp Adali ◽  
Glen Bright

Abstract. Fibre Reinforced Plastic (FRP) materials are widely used in several key engineering applications such as ships, aircraft, wind turbine blades, helicopter blade, automobiles, and other transportation vehicles because of their mechanical properties and tailoring capabilities.Carbon and glass fibres are the most popular fibre reinforcements used for composite components. In the present study, two different stacking sequences, (0 degrees) and (0/90 degrees), are selected to study effect of fibre hybridization on flexural performance using three-point bending tests. Materials used are E-glass and T-300 carbon fibres in an epoxy matrix and the laminates were produced by resin transfer moulding methods. Fracture surfaces of composite laminates were examined using a scanning electron microscope. The results showed that the flexural strength, modulus and strain at failure of unidirectional and bidirectional composite laminates were strongly influenced by stacking sequences, fibre orientation and the hybrid ratio of the fibres. A higher flexural modulus was achieved when carbon fibres were placed on the compressive side. Hybrid specimens showed higher flexural strength and modulus by 21.08% and 145.39%, respectively, compared to the pure glass fibre reinforced laminates. On the other hand, flexural strength and modulus of hybrid specimen were less by 6.50% and 8.20%, respectively, as compared to carbon fibre reinforced specimens. Stacking sequences and hybrid ratio of glass/carbon fibre reinforced specimens were investigated with a view towards improving the mechanical properties of hybrid composites.


Sign in / Sign up

Export Citation Format

Share Document