Degradation of Commercial Textile Dye By Fenton's Reagent Under Xenon Beam Irradiation in Aqueous Medium

2008 ◽  
Vol 1 (1) ◽  
pp. 108-120 ◽  
Author(s):  
M M Rahman ◽  
M. A. Hasnat ◽  
Kazuaki Sawada

Degradation of commercial textile dye named Malachite green (MG) has been investigated by Fenton reagent under xenon beam irradiation (1501~1532 lux, λ ≤ 320 nm) in an aqueous solution. The degradation process was initiated by the photolysis of Fe(III)-hydroxyl species, and accelerated by xenon beam irradiation, due to enhance photolysis of Fe(III) species, which enhances the regeneration of Fe(II) with concomitant production of hydroxyl free radicals.  Influences of various experimental parameters, such as the concentration of H2O2, Fe (III), xenon irradiation source, and pH of the experimental solutions on the initial rate and photo-degradation extent of the MG dye degradation were assessed and optimized. Although the initial rate of degradation was not affected by the initial MG concentration, it was affected by the concentration of Fenton reagents [Fe(III) and H2O2 solution], pH of the experimental solutions, and the intensity of the xenon beam. A significant enhancement of the initial rate and extent of degradation of MG dye was observed at solution pH of ~3.1 under xenon beam radiation. Complete degradation of MG dye (>99.5 %) was achieved by xenon beam/Fenton’s reagent process in aqueous solution (pH, 3.1).  Keywords: Malachite green; Organic dye, Dye mineralization, Fenton reagents, Xenon radiation. ©2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i1.1059 

Author(s):  
Xin Zhang ◽  
Yingzhi Qin ◽  
Weiting Zhang ◽  
Yali Zhang ◽  
Guang-En Yuan

Abstract Orange G (OG), a typical azo dye in textile wastewaters, has been the subject of intense investigations. This study investigated oxidative degradation of OG in aqueous solution by persulfate (PS) activated with pyrite. A complete destruction of OG was achieved within 60 min in the pyrite/PS system. Lower solution pH, smaller pyrite particles and higher pyrite dosage was beneficial for OG degradation. Higher PS concentration was also in favour of OG degradation, but excess PS would decrease the removal efficiency of OG. The addition of HCO3− and H2PO4− but Cl− had inhibitory effects on the destruction of OG. The results of quenching experiments and electron paramagnetic resonance tests proved that SO4•− and •OH were the dominant reactive species responsible for OG degradation in the pyrite/PS system. The azo bond, naphthalene ring and benzene ring of OG were all destroyed by the generated reactive species. The mineralization rate of OG reached 34.4% after 60 min of reaction. This work will provide information for understanding azo dye degradation by pyrite activated PS.


2021 ◽  
Vol 17 (1) ◽  
pp. 95-103
Author(s):  
Mohamad Firdaus Mohamad Yusop ◽  
Mohd Azmier Ahmad ◽  
Nur Ayshah Rosli ◽  
Fadzil Noor Gonawan ◽  
Soran Jalal Abdullah

Physiochemical activation consists of heat treatment coupling with CO2 gasification and KOH chemical treatment were applied in preparing durian peel based activated carbon (DPAC) to remove basic dye, malachite green (MG) from aqueous solution. Several parameters namely, effect of initial MG concentration as well as contact time, solution temperature and initial solution pH were carried out in this study. Characterization study revealed that DPAC pose high BET surface area which is 886.31 m2/g and its surface was found to be mesoporous in nature with heterogeneous type of pore structures. Eight isotherms and four kinetic models were utilized and it was revealed that the adsorpttion system followed Freundlich isotherm and pseudo-first order (PFO) kinetic model. Mechanism study using intraparticle diffusion and Boyd plot confirmed that adsorption of MG onto DPAC was controlled by the film-diffusion mechanism. Thermodynamic study indicated that the adsorption system was exothermic, spontaneous, feasible and governed by physical-type of adsorption.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Karen E. Barrera-Salgado ◽  
Gabriela Ramírez-Robledo ◽  
Alberto Álvarez-Gallegos ◽  
Carlos A. Pineda-Arellano ◽  
Fernando Z. Sierra-Espinosa ◽  
...  

The Fenton process coupled to photosonolysis (UV light and Us), using Fe2O3catalyst supported on Al2O3, was used to oxidize a model pollutant like acid green 50 textile dye (AG50). Dye degradation was followed by AG50 concentration decay analyses. It was observed that parameters like iron content on a fixed amount of catalyst supporting material, catalyst annealing temperature, initial dye concentration, and the solution pH influence the overall treatment efficiency. High removal efficiencies of the model pollutant are achieved. The stability and reusability tests of the Fe2O3catalyst show that the catalyst can be used up to three cycles achieving high discoloration. Thus, this catalyst is highly efficient for the degradation of AG50 in the Fenton process.


Author(s):  
Manmeet Kaur ◽  
Suman Prajapati ◽  
Samneek Cholia ◽  
Jaskeet Singh Mann ◽  
Gurpreet Singh

Background: In the recent years, the green synthesis of nanoparticles has taken a lead role over the conventional chemical and physical approach due to its non-toxic, cost effective parameters and has found its place in various applications. Objectives: The major objectives of this study was to synthesise and characterize the copper nanoparticles using the rose extract at different set of conditions and analyse these nanoparticles as a source of dye degradation agent under sunlight conditions. Methods: Present study was conducted with the aim to synthesis the copper nanoparticle using the rose petal extract. The components present the in the extract act as the reduction and stabilization agents for the synthesis of CuNPs. The synthesized nanoparticles were characterized by using UV-VIS, FTIR, XRD and SEM analysis. Photocatalytic degradation of two dyes (Malachite Green and Carbol fuchsin) was analysed using double beam spectroscopic analysis Results: UV-Vis analysis indicated the presence of a peak at around 630 nm. The FT-IR analysis indicated the involvement of various biomolecules during the synthesis of nanoparticles. The structure and the conformation was elucidated using XRD and SEM showed the agglomerated form of the synthesized nanoparticles with the size range of about 60-90 nm. The synthesised copper nanoparticles was used for degradation of malachite green and carbol fuchsin dye using photocatalytic under sunlight irradiation. UV-Vis spectral analysis indicated that synthesised copper nanoparticle act more effective in degradation of malachite green (around 95%) whereas carbol fuchsin showed a maximum degradation by 52% therefore suggesting that CuNPs act as an efficient photo catalyst in dye degradation. Conclusion: The results obtained from this study indicates that rose extract has the potential of synthesis of copper nanoparticles which is non-toxic and convenient approach as compared to physical and chemical synthesis. These nanoparticles can be effectively employed as dye decolourization agents to treat industrial effluent and prevent the environmental pollution.


2020 ◽  
Vol 10 (6) ◽  
pp. 849-859
Author(s):  
Radwa A. El-Salamony ◽  
Abeer A. Emam ◽  
Nagwa A. Badawy ◽  
Sara F. El-Morsi

Objective: ZnO nanoparticles were synthesized using wet impregnation method, and activated carbon from rice straw (RS) prepared through chemical route. Methods: The nano-composites ZnO-AC series were prepared with different ZnO:AC ratio of 10, 20, 50, and 70% to optimize the zinc oxide nanoparticles used. The obtained composites were characterized by FE-SEM, XRD, SBET, and optical techniques then used for the photo-degradation of Malachite green dye (MG) under visible light. Results: It was found that 10ZnO-AC exhibited excellent visible light photo-catalytic performance. The ·OH radicals’ formation is matching with photo-activity of the prepared composites. The photo-degradation efficiency of MG increased from 63% to 93%, when the 10ZnO-AC photocatalyst amount was increased from 0.5 to 6 g/L. Conclusion: The GC-MS technique was used to analyze the intermediates formed; up to 15 kinds of chemicals were identified as the degradation products.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


Chemosphere ◽  
2021 ◽  
Vol 273 ◽  
pp. 129634
Author(s):  
A. Annam Renita ◽  
Kilaru Harsha Vardhan ◽  
P. Senthil Kumar ◽  
P. Tsopbou Ngueagni ◽  
A. Abilarasu ◽  
...  

RSC Advances ◽  
2021 ◽  
Vol 11 (33) ◽  
pp. 20486-20497
Author(s):  
Zhiyan Liu ◽  
Rui Ma ◽  
Wenjie Du ◽  
Gang Yang ◽  
Tao Chen

Chitosan hydrogel is regenerated from alkali/urea aqueous solution and the lithium sulfonate second network is introduced by electron beam radiation-initiated in situ free radical polymerization. The freeze-dried aerogel has CO2 capture capacity.


2018 ◽  
Vol 6 (4) ◽  
pp. 327-331
Author(s):  
Dipesh Shahi ◽  
Rajiv Sapkota

The use of different dyes and pigments is increasing with the increase in industrialization leading to the high production of effluent. The effluent contaminated with dyes and dye-stuff has harmful effects on public health and the environment. Thus, the treatment of effluent is essential. Biological approaches are gaining much interest due to their cost-effective and eco-friendly nature over various physicochemical methods for the treatment of dye-contaminated wastewater. This study highlights on the biodegradation of congo red and malachite green by using leaf and root extracts of Parthenium hysterophorus. The extract and the dye were mixed in the ratio of 1:2 and incubated at 40ºC for 90 minutes. Decolorization assay was performed using UV visible spectrophotometer which indicated that decolorization was due to degradation of dyes into non-colored metabolites. The leaves extract exhibited higher decolorizing activity than roots extract. The maximum decolorization for leaves extract was 55.8% (congo red) and 51.6% (malachite green). Furthermore, phytotoxicity test was carried out to determine the effect of dyes and their degradation metabolites on seed germination and seedling growth of chickpea (Cicer arietinum L). The germination percentage and seedling growth were more in degradation metabolites than untreated dyes, indicating less toxic nature of degradation metabolites. Hence, it can be inferred that P. hysterophorus extracts can be used to treat dye wastewater and treated wastewater can be used for irrigation. Int. J. Appl. Sci. Biotechnol. Vol 6(4): 327-331


Sign in / Sign up

Export Citation Format

Share Document