scholarly journals Implementation and characterisation of a sterilisation module consisting of novel 265 nm UVC LED packages

2021 ◽  
Vol 28 (4) ◽  
pp. 213-220
Author(s):  
Xing Qiu ◽  
Jeffery C C Lo ◽  
Yuanjie Cheng ◽  
Hua Xu ◽  
Qianwen Xu ◽  
...  

To efficiently fight against the COVID-19 pandemic, a sterilisation module using 265 nm UVC LED packages was developed. In this paper, the performance of the sterilisation module in terms of irradiance uniformity, junction temperature increase and sterilisation efficiency were characterised. The irradiance uniformity fluctuation across the four corners and the centre point in a 130 mm × 130 mm area was below 10%, exhibiting good uniformity. Uniform irradiance was important to achieve consistent sterilisation, which was the primary difference between the UVC LED package developed and commercial UVC LED packages. Key to achieving uniform irradiance was the structure, consisting of a stacked silicon reflector and a secondary optical lens designed by ray tracing simulation. The junction temperature increase of the 265 nm UVC LED package driving at 200 mA was only 28°C, sufficiently low to exhibit better reliability and performance. A 99.99% sterilisation efficiency on E. coli bacteria was achieved within one minute with UV dosage of 2.7 mJ/cm2 at 200 mA driving current. From the results, the novel 265 nm UVC LED package was a time-efficient solution for disinfection purposes.

2019 ◽  
Author(s):  
Anja Knorrscheidt ◽  
Pascal Püllmann ◽  
Eugen Schell ◽  
Dominik Homann ◽  
Erik Freier ◽  
...  

Directed evolution requires the screening of enzyme libraries in biological matrices. Available assays are mostly substrate or enzyme specific. Chromatographic techniques like LC and GC overcome this limitation, but require long analysis times. The herein developed multiple injections in a single experimental run (MISER) using GC coupled to MS allows the injection of samples every 33 s resulting in 96-well microtiter plate analysis within 50 min. This technique is implementable in any GC-MS system with autosampling. Since the GC-MS is far less prone to ion suppression than LCMS, no chromatographic separation is required. This allows the utilisation of an internal standards and the detection of main and side-product. To prove the feasibility of the system in enzyme screening, two libraries were assessed: i) YfeX library in an E. coli whole cell system for the carbene-transfer reaction on indole revealing the novel axial ligand tryptophan, ii) a library of 616 chimeras of fungal unspecific peroxygenase (UPO) in S. cerevisiae supernatant for hydroxylation of tetralin resulting in novel constructs. The data quality and representation are automatically assessed by a new R-script.


Author(s):  
Jasmin Kaur Jasuja ◽  
Stefan Zimmermann ◽  
Irene Burckhardt

AbstractOptimisation of microbiological diagnostics in primarily sterile body fluids is required. Our objective was to apply EUCAST’s RAST on primarily sterile body fluids in blood culture bottles with total lab automation (TLA) and to compare results to our reference method Vitek2 in order to report susceptibility results earlier. Positive blood culture bottles (BACTEC™ Aerobic/Anaerobic/PEDS) inoculated with primarily sterile body fluids were semi-automatically subcultured onto Columbia 5% SB agar, chocolate agar, MacConkey agar, Schaedler/KV agar and Mueller-Hinton agar. On latter, cefoxitin, ampicillin, vancomycin, piperacillin/tazobactam, meropenem and ciprofloxacin were added. After 6 h, subcultures and RAST were imaged and MALDI-TOF MS was performed. Zone sizes were digitally measured and interpreted following RAST breakpoints for blood cultures. MIC values were determined using Vitek2 panels. During a 1-year period, 197 Staphylococcus aureus, 91 Enterococcus spp., 38 Escherichia coli, 11 Klebsiella pneumoniae and 8 Pseudomonas aeruginosa were found. Categorical agreement between RAST and MIC was 96.5%. Comparison showed no very major errors, 2/7 (28.6%) and 1/7 (14.3%) of major errors for P. aeruginosa and meropenem and ciprofloxacin, 1/9 (11.1%) for K. pneumoniae and ciprofloxacin, 4/69 (7.0%) and 3/43 (5.8%) for Enterococcus spp. and vancomycin and ampicillin, respectively. Minor errors for P. aeruginosa and meropenem (1/8; 12.8%) and for E. coli and ciprofloxacin (2/29; 6.5%) were found. 30/550 RAST measurements were within area of technical uncertainty. RAST is applicable and performs well for primarily sterile body fluids in blood culture bottles, partially better than blood-based RAST. Official EUCAST evaluation is needed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hussein M. Galal ◽  
M. I. Abdrabou ◽  
Ahmed H. I. Faraag ◽  
C. K. Mah ◽  
Azza M. Tawfek

AbstractThe broiler industry in the Middle East (ME) faces many challenges related to bacterial infections, including M. gallisepticum, M. synoviae, E. coli, and other gram-negative bacteria, exacerbated by various errors in the brooding process. Antibiotics use in the first three days of life, such as Linco-Spectin 100 SP, tilmicosin, enrofloxacin, tylosin, colistin, and doxycycline, is the trend in the market to control such challenges. This study aimed to evaluate the efficacy of the newly introduced aroA E. coli vaccine (Poulvac E. coli) and its ability to reduce over-reliance on the heavy use of antibiotics in the ME. The study was conducted on 160 broiler chicks, divided into eight even groups. Each group was treated differently in terms of antibiotic therapy and ages at the time of Poulvac E. coli administration and the challenge of virulent avian pathogenic E. coli (APEC), serotype O78. Spray application of Poulvac E. coli at seven days of age plus Linco-Spectin 100 SP during the first three days provided the best results for zero mortality after challenge with APEC, while Poulvac E. coli at seven days with enrofloxacin during the early three days resulted in 10% mortality. Poulvac E. coli hatchery vaccination protected birds against mortality but reduced body weight gain compared to the 7-day group vaccinated with Linco-Spectin 100 SP during the first three days. Poulvac E. coli given on day one or day seven did not affect the immune response to concurrent respiratory viral vaccines and, in some cases, improved response. This study shows that Poulvac E. coli at seven days of age, together with Linco-Spectin 100 during the first three days, has produced the best results in terms of protection and performance in the ME high presence of avian pathogenic E. coli field challenge.


Diversity ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 200
Author(s):  
Eric J. Gangloff ◽  
Sierra Spears ◽  
Laura Kouyoumdjian ◽  
Ciara Pettit ◽  
Fabien Aubret

Ectothermic animals living at high elevation often face interacting challenges, including temperature extremes, intense radiation, and hypoxia. While high-elevation specialists have developed strategies to withstand these constraints, the factors preventing downslope migration are not always well understood. As mean temperatures continue to rise and climate patterns become more extreme, such translocation may be a viable conservation strategy for some populations or species, yet the effects of novel conditions, such as relative hyperoxia, have not been well characterised. Our study examines the effect of downslope translocation on ectothermic thermal physiology and performance in Pyrenean rock lizards (Iberolacerta bonnali) from high elevation (2254 m above sea level). Specifically, we tested whether models of organismal performance developed from low-elevation species facing oxygen restriction (e.g., hierarchical mechanisms of thermal limitation hypothesis) can be applied to the opposite scenario, when high-elevation organisms face hyperoxia. Lizards were split into two treatment groups: one group was maintained at a high elevation (2877 m ASL) and the other group was transplanted to low elevation (432 m ASL). In support of hyperoxia representing a constraint, we found that lizards transplanted to the novel oxygen environment of low elevation exhibited decreased thermal preferences and that the thermal performance curve for sprint speed shifted, resulting in lower performance at high body temperatures. While the effects of hypoxia on thermal physiology are well-explored, few studies have examined the effects of hyperoxia in an ecological context. Our study suggests that high-elevation specialists may be hindered in such novel oxygen environments and thus constrained in their capacity for downslope migration.


1995 ◽  
Vol 347 (1319) ◽  
pp. 21-25 ◽  

Over the past three or four years, great strides have been made in our understanding of the proteins involved in recombination and the mechanisms by which recombinant molecules are formed. This review summarizes our current understanding of the process by focusing on recent studies of proteins involved in the later steps of recombination in bacteria. In particular, biochemical investigation of the in vitro properties of the E. coli RuvA, RuvB and RuvC proteins have provided our first insight into the novel molecular mechanisms by which Holliday junctions are moved along DNA and then resolved by endonucleolytic cleavage.


Author(s):  
Lee-Huang Chen ◽  
Kyunam Kim ◽  
Ellande Tang ◽  
Kevin Li ◽  
Richard House ◽  
...  

This paper presents the design, analysis and testing of a fully actuated modular spherical tensegrity robot for co-robotic and space exploration applications. Robots built from tensegrity structures (composed of pure tensile and compression elements) have many potential benefits including high robustness through redundancy, many degrees of freedom in movement and flexible design. However to fully take advantage of these properties a significant fraction of the tensile elements should be active, leading to a potential increase in complexity, messy cable and power routing systems and increased design difficulty. Here we describe an elegant solution to a fully actuated tensegrity robot: The TT-3 (version 3) tensegrity robot, developed at UC Berkeley, in collaboration with NASA Ames, is a lightweight, low cost, modular, and rapidly prototyped spherical tensegrity robot. This robot is based on a ball-shaped six-bar tensegrity structure and features a unique modular rod-centered distributed actuation and control architecture. This paper presents the novel mechanism design, architecture and simulations of TT-3, the first untethered, fully actuated cable-driven six-bar tensegrity spherical robot ever built and tested for mobility. Furthermore, this paper discusses the controls and preliminary testing performed to observe the system’s behavior and performance.


2017 ◽  
Vol 61 (11) ◽  
Author(s):  
Susanne Jacobsson ◽  
Susanne Paukner ◽  
Daniel Golparian ◽  
Jörgen S. Jensen ◽  
Magnus Unemo

ABSTRACT We evaluated the activity of the novel semisynthetic pleuromutilin lefamulin, inhibiting protein synthesis and growth, and the effect of efflux pump inactivation on clinical gonococcal isolates and reference strains (n = 251), including numerous multidrug-resistant and extensively drug-resistant isolates. Lefamulin showed potent activity against all gonococcal isolates, and no significant cross-resistance to other antimicrobials was identified. Further studies of lefamulin are warranted, including in vitro selection and mechanisms of resistance, pharmacokinetics/pharmacodynamics, optimal dosing, and performance in randomized controlled trials.


2013 ◽  
Vol 62 (11) ◽  
pp. 1728-1734 ◽  
Author(s):  
Dongguo Wang ◽  
Enping Hu ◽  
Jiayu Chen ◽  
Xiulin Tao ◽  
Katelyn Gutierrez ◽  
...  

A total of 69 strains of Escherichia coli from patients in the Taizhou Municipal Hospital, China, were isolated, and 11 strains were identified that were resistant to bacitracin, chloramphenicol, tetracycline and erythromycin. These strains were PCR positive for at least two out of three genes, ybjG, dacC and mdfA, by gene mapping with conventional PCR detection. Conjugation experiments demonstrated that these genes existed in plasmids that conferred resistance. Novel ybjG and dacC variants were isolated from E. coli strains EC2163 and EC2347, which were obtained from the sputum of intensive care unit patients. Genetic mapping showed that the genes were located on 8200 kb plasmid regions flanked by EcoRI restriction sites. Three distinct genetic structures were identified among the 11 PCR-positive strains of E. coli, and two contained the novel ybjG and dacC variants. The putative amino acid differences in the ybjG and dacC gene variants were characterized. These results provide evidence for novel variants of ybjG and dacC, and suggest that multiple drug resistance in hospital strains of E. coli depends on the synergistic function of ybjG, dacC and mdfA within three distinct genetic structures in conjugative plasmids.


2018 ◽  
Vol 59 (S1) ◽  
pp. E412-E421 ◽  
Author(s):  
De Sun ◽  
Dongmin Yue ◽  
Bingbing Li ◽  
Zhaoshan Zheng ◽  
Xiangchun Meng

Author(s):  
Irina A. Rodionova ◽  
Ye Gao ◽  
Anand Sastry ◽  
Reo Yoo ◽  
Dmitry A. Rodionov ◽  
...  

AbstractThe YdhB transcriptional factor, re-named here AdnB, homologous to the allantoin regulator, AllS, was shown to regulate ydhC gene expression in Escherichia coli, which is divergently transcribed from adnB, and this gene arrangement is conserved in many Protreobacteria. The predicted consensus DNA binding sequence for YdhB is also conserved in Entrobacterial genomes. RNA-seq data confirmed the activation predicted due to the binding of AdnB as shown by Chip-Exo results. Fluorescent polarization experiments revealed binding of YdhB to the predicted binding site upstream of ydhC in the presence of 0.35 mM adenine, but not in its absence. The E. coli MG1655, strain lacking the ydhB gene, showed a lower level of ydhC mRNA in cells grown in M9-glucose supplemented with 2 mM adenosine. Adenosine and adenine are products of purine metabolism and provide sources of ammonium for many organisms. They are utilized under nitrogen starvation conditions as single nitrogen sources. Deletion of either the ydhC or the ydhB gene leads to a substantially decreased growth rate for E. coli in minimal M9 medium with glycerol as the carbon source and adenosine or adenine as the single nitrogen source. The ydhC mutant showed increased resistance to Paromomycine, Sulfathiazole and Sulfamethohazole using Biolog plates. We provide evidence that YdhB, (a novel LysR family regulator) activates expression of the ydhC gene, encoding a novel adenosine/adenine transporter in E. coli. The YdhB binding consensus for different groups of Enterobacteria was predicted.


Sign in / Sign up

Export Citation Format

Share Document