scholarly journals Study on Effects of Electrical Stimulation on Rabbit Esophageal Body Motility In Vivo

2018 ◽  
pp. 275-282 ◽  
Author(s):  
L. ZHANG ◽  
W. ZHAO ◽  
C. ZHAO ◽  
H. JIN ◽  
B. WANG ◽  
...  

Electric stimulation (ES) could induce contraction of intestinal smooth muscle. The aim of this study was to analyze the effects of ES on esophageal motility and the underlying mechanism in vivo. Twenty-eight rabbits were equipped with a pair of subserosa electrodes (connected to an electrical stimulator) in the lower segment of the esophagus. The ES signal consisted of bipolar rectangular pulse trains, lasting for 3 s, with different amplitudes (1 mA, 3 mA, 5 mA and 10 mA), and frequencies (10 Hz, 20 Hz and 50 Hz). The amplitude of the contraction was recognized by high-resolution manometry. The effect of ES was tested under anesthesia and following administration of atropine, phentolamine or L-NAME. ES induced esophageal contraction at the stimulated site. A statistically significant increase in esophageal pressure was observed when the stimulation amplitude was above 3 mA. The increase in esophageal pressure was associated with the amplitude of stimulus as well as the frequency. During stimulation, atropine, phentolamine and L-NAME had no effect on the increase of esophageal pressure induced by ES. These findings implied that ES induced esophageal contraction were not mediated via the NANC, adrenergic or cholinergic pathway. The amplitude of esophageal contraction was current and frequency dependent.

2008 ◽  
Vol 190 (7) ◽  
pp. 2496-2504 ◽  
Author(s):  
Po-Chi Soo ◽  
Yu-Tze Horng ◽  
Jun-Rong Wei ◽  
Jwu-Ching Shu ◽  
Chia-Chen Lu ◽  
...  

ABSTRACT Serratia marcescens cells swarm at 30°C but not at 37°C, and the underlying mechanism is not characterized. Our previous studies had shown that a temperature upshift from 30 to 37°C reduced the expression levels of flhDCSm and hagSm in S. marcescens CH-1. Mutation in rssA or rssB, cognate genes that comprise a two-component system, also resulted in precocious swarming phenotypes at 37°C. To further characterize the underlying mechanism, in the present study, we report that expression of flhDCSm and synthesis of flagella are significantly increased in the rssA mutant strain at 37°C. Primer extension analysis for determination of the transcriptional start site(s) of flhDCSm revealed two transcriptional start sites, P1 and P2, in S. marcescens CH-1. Characterization of the phosphorylated RssB (RssB∼P) binding site by an electrophoretic mobility shift assay showed direct interaction of RssB∼P, but not unphosphorylated RssB [RssB(D51E)], with the P2 promoter region. A DNase I footprinting assay using a capillary electrophoresis approach further determined that the RssB∼P binding site is located between base pair positions −341 and −364 from the translation start codon ATG in the flhDCSm promoter region. The binding site overlaps with the P2 “−35” promoter region. A modified chromatin immunoprecipitation assay was subsequently performed to confirm that RssB∼P binds to the flhDCSm promoter region in vivo. In conclusion, our results indicated that activated RssA-RssB signaling directly inhibits flhDCSm promoter activity at 37°C. This inhibitory effect was comparatively alleviated at 30°C. This finding might explain, at least in part, the phenomenon of inhibition of S. marcescens swarming at 37°C.


2021 ◽  
Vol 9 (7) ◽  
pp. e002383
Author(s):  
Jin-Li Wei ◽  
Si-Yu Wu ◽  
Yun-Song Yang ◽  
Yi Xiao ◽  
Xi Jin ◽  
...  

PurposeRegulatory T cells (Tregs) heavily infiltrate triple-negative breast cancer (TNBC), and their accumulation is affected by the metabolic reprogramming in cancer cells. In the present study, we sought to identify cancer cell-intrinsic metabolic modulators correlating with Tregs infiltration in TNBC.Experimental designUsing the RNA-sequencing data from our institute (n=360) and the Molecular Taxonomy of Breast Cancer International Consortium TNBC cohort (n=320), we calculated the abundance of Tregs in each sample and evaluated the correlation between gene expression levels and Tregs infiltration. Then, in vivo and in vitro experiments were performed to verify the correlation and explore the underlying mechanism.ResultsWe revealed that GTP cyclohydrolase 1 (GCH1) expression was positively correlated with Tregs infiltration and high GCH1 expression was associated with reduced overall survival in TNBC. In vivo and in vitro experiments showed that GCH1 increased Tregs infiltration, decreased apoptosis, and elevated the programmed cell death-1 (PD-1)-positive fraction. Metabolomics analysis indicated that GCH1 overexpression reprogrammed tryptophan metabolism, resulting in L-5-hydroxytryptophan (5-HTP) accumulation in the cytoplasm accompanied by kynurenine accumulation and tryptophan reduction in the supernatant. Subsequently, aryl hydrocarbon receptor, activated by 5-HTP, bound to the promoter of indoleamine 2,3-dioxygenase 1 (IDO1) and thus enhanced the transcription of IDO1. Furthermore, the inhibition of GCH1 by 2,4-diamino-6-hydroxypyrimidine (DAHP) decreased IDO1 expression, attenuated tumor growth, and enhanced the tumor response to PD-1 blockade immunotherapy.ConclusionsTumor-cell-intrinsic GCH1 induced immunosuppression through metabolic reprogramming and IDO1 upregulation in TNBC. Inhibition of GCH1 by DAHP serves as a potential immunometabolic strategy in TNBC.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Zhen Li ◽  
Sumin Gu ◽  
Yumeng Quan ◽  
Kulandaiappan Varadaraj ◽  
Jean X. Jiang

AbstractCongenital cataracts are associated with gene mutations, yet the underlying mechanism remains largely unknown. Here we reported an embryonic chick lens model that closely recapitulates the process of cataract formation. We adopted dominant-negative site mutations that cause congenital cataracts, connexin, Cx50E48K, aquaporin 0, AQP0R33C, αA-crystallin, CRYAA R12C and R54C. The recombinant retroviruses containing these mutants were microinjected into the occlusive lumen of chick lenses at early embryonic development. Cx50E48K expression developed cataracts associated with disorganized nuclei and enlarged extracellular spaces. Expression of AQP0R33C resulted in cortical cataracts, enlarged extracellular spaces and distorted fiber cell organization. αA crystallin mutations distorted lens light transmission and increased crystalline protein aggregation. Together, retroviral expression of congenital mutant genes in embryonic chick lenses closely mimics characteristics of human congenital cataracts. This model will provide an effective, reliable in vivo system to investigate the development and underlying mechanism of cataracts and other genetic diseases.


Author(s):  
Yong Fu ◽  
Gailing Ma ◽  
Yuqian Zhang ◽  
Wenli Wang ◽  
Tongguo Shi ◽  
...  

Abstract Background Interleukin-10 (IL-10) is a potent immunoregulatory cytokine that plays a pivotal role in maintaining mucosal immune homeostasis. As a novel synthetic inhibitor of salt-inducible kinases (SIKs), HG-9-91-01 can effectively enhance IL-10 secretion at the cellular level, but its in vivo immunoregulatory effects remain unclear. In this study, we investigated the effects and underlying mechanism of HG-9-91-01 in murine colitis models. Methods The anti-inflammatory effects of HG-9-91-01 were evaluated on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-, dextran sulfate sodium–induced colitis mice, and IL-10 knockout chronic colitis mice. The in vivo effector cell of HG-9-91-01 was identified by fluorescence-activated cell sorting and quantitative real-time polymerase chain reaction. The underlying mechanism of HG-9-91-01 was investigated via overexpressing SIKs in ANA-1 macrophages and TNBS colitis mice. Results Treatment with HG-9-91-01 showed favorable anticolitis effects in both TNBS- and DSS-treated mice through significantly promoting IL-10 expression in colonic macrophages but failed to protect against IL-10 KO murine colitis. Further study indicated that HG-9-91-01 markedly enhanced the nuclear level of cAMP response element-binding protein (CREB)-regulated transcription coactivator 3 (CRTC3), whereas treatment with lentiviruses encoding SIK protein markedly decreased the nuclear CRTC3 level in HG-9-91-01–treated ANA-1 macrophages. In addition, intracolonic administration with lentiviruses encoding SIK protein significantly decreased the nuclear CRTC3 level in the lamina propria mononuclear cells and ended the anti-inflammatory activities of HG-9-91-01. Conclusions We found that HG-9-91-01 promoted the IL-10 expression of colonic macrophages and exhibited its anticolitis activity through the SIK/CRTC3 axis, and thus it may represent a promising strategy for inflammatory bowel disease therapy.


Author(s):  
Weiqiang Huang ◽  
Longshan Zhang ◽  
Mi Yang ◽  
Xixi Wu ◽  
Xiaoqing Wang ◽  
...  

Abstract Background Irradiation has emerged as a valid tool for nasopharyngeal carcinoma (NPC) in situ treatment; however, NPC derived from tissues treated with irradiation is a main cause cancer-related death. The purpose of this study is to uncover the underlying mechanism regarding tumor growth after irradiation and provided potential therapeutic strategy. Methods Fibroblasts were extracted from fresh NPC tissue and normal nasopharyngeal mucosa. Immunohistochemistry was conducted to measure the expression of α-SMA and FAP. Cytokines were detected by protein array chip and identified by real-time PCR. CCK-8 assay was used to detect cell proliferation. Radiation-resistant (IRR) 5-8F cell line was established and colony assay was performed to evaluate tumor cell growth after irradiation. Signaling pathways were acquired via gene set enrichment analysis (GSEA). Comet assay and γ-H2AX foci assay were used to measure DNA damage level. Protein expression was detected by western blot assay. In vivo experiment was performed subcutaneously. Results We found that radiation-resistant NPC tissues were constantly infiltrated with a greater number of cancer-associated fibroblasts (CAFs) compared to radiosensitive NPC tissues. Further research revealed that CAFs induced the formation of radioresistance and promoted NPC cell survival following irradiation via the IL-8/NF-κB pathway to reduce irradiation-induced DNA damage. Treatment with Tranilast, a CAF inhibitor, restricted the survival of CAF-induced NPC cells and attenuated the of radioresistance properties. Conclusions Together, these data demonstrate that CAFs can promote the survival of irradiated NPC cells via the NF-κB pathway and induce radioresistance that can be interrupted by Tranilast, suggesting the potential value of Tranilast in sensitizing NPC cells to irradiation.


Oncogene ◽  
2021 ◽  
Author(s):  
Pengpeng Zhu ◽  
Fang He ◽  
Yixuan Hou ◽  
Gang Tu ◽  
Qiao Li ◽  
...  

AbstractThe hostile hypoxic microenvironment takes primary responsibility for the rapid expansion of breast cancer tumors. However, the underlying mechanism is not fully understood. Here, using RNA sequencing (RNA-seq) analysis, we identified a hypoxia-induced long noncoding RNA (lncRNA) KB-1980E6.3, which is aberrantly upregulated in clinical breast cancer tissues and closely correlated with poor prognosis of breast cancer patients. The enhanced lncRNA KB-1980E6.3 facilitates breast cancer stem cells (BCSCs) self-renewal and tumorigenesis under hypoxic microenvironment both in vitro and in vivo. Mechanistically, lncRNA KB-1980E6.3 recruited insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) to form a lncRNA KB-1980E6.3/IGF2BP1/c-Myc signaling axis that retained the stability of c-Myc mRNA through increasing binding of IGF2BP1 with m6A-modified c-Myc coding region instability determinant (CRD) mRNA. In conclusion, we confirm that lncRNA KB-1980E6.3 maintains the stemness of BCSCs through lncRNA KB-1980E6.3/IGF2BP1/c-Myc axis and suggest that disrupting this axis might provide a new therapeutic target for refractory hypoxic tumors.


Phytomedicine ◽  
2021 ◽  
Vol 83 ◽  
pp. 153479
Author(s):  
Xin-Hong Feng ◽  
Hai-Yan Xu ◽  
Jian-Ye Wang ◽  
Shen Duan ◽  
Ying-Chun Wang ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chunyang Li ◽  
Shuangqing Yang ◽  
Huaqing Ma ◽  
Mengjia Ruan ◽  
Luyan Fang ◽  
...  

Abstract Background Cervical cancer is a type of the most common gynecology tumor in women of the whole world. Accumulating data have shown that icariin (ICA), a natural compound, has anti-cancer activity in different cancers, including cervical cancer. The study aimed to reveal the antitumor effects and the possible underlying mechanism of ICA in U14 tumor-bearing mice and SiHa cells. Methods The antitumor effects of ICA were investigated in vivo and in vitro. The expression of TLR4/MyD88/NF-κB and Wnt/β-catenin signaling pathways were evaluated. Results We found that ICA significantly suppressed tumor tissue growth and SiHa cells viability in a dose-dependent manner. Also, ICA enhanced the anti-tumor humoral immunity in vivo. Moreover, ICA significantly improved the composition of the microbiota in mice models. Additionally, the results clarified that ICA significantly inhibited the migration, invasion capacity, and expression levels of TGF-β1, TNF-α, IL-6, IL-17A, IL-10 in SiHa cells. Meanwhile, ICA was revealed to promote the apoptosis of cervical cancer cells by down-regulating Ki67, survivin, Bcl-2, c-Myc, and up-regulating P16, P53, Bax levels in vivo and in vitro. For the part of mechanism exploration, we showed that ICA inhibits the inflammation, proliferation, migration, and invasion, as well as promotes apoptosis and immunity in cervical cancer through impairment of TLR4/MyD88/NF-κB and Wnt/β-catenin pathways. Conclusions Taken together, ICA could be a potential supplementary agent for cervical cancer treatment.


Blood ◽  
2020 ◽  
Vol 136 (2) ◽  
pp. 210-223 ◽  
Author(s):  
Eun Ji Gang ◽  
Hye Na Kim ◽  
Yao-Te Hsieh ◽  
Yongsheng Ruan ◽  
Heather A. Ogana ◽  
...  

Abstract Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


2021 ◽  
Vol 22 (3) ◽  
pp. 1407
Author(s):  
Hongxia Liu ◽  
Wang Zheng ◽  
Qianping Chen ◽  
Yuchuan Zhou ◽  
Yan Pan ◽  
...  

Nasopharyngeal carcinoma (NPC) is one of the most frequent head and neck malignant tumors and is majorly treated by radiotherapy. However, radiation resistance remains a serious obstacle to the successful treatment of NPC. The aim of this study was to discover the underlying mechanism of radioresistance and to elucidate novel genes that may play important roles in the regulation of NPC radiosensitivity. By using RNA-seq analysis of NPC cell line CNE2 and its radioresistant cell line CNE2R, lncRNA CASC19 was screened out as a candidate radioresistance marker. Both in vitro and in vivo data demonstrated that a high expression level of CASC19 was positively correlated with the radioresistance of NPC, and the radiosensitivity of NPC cells was considerably enhanced by knockdown of CASC19. The incidence of autophagy was enhanced in CNE2R in comparison with CNE2 and another NPC cell line HONE1, and silencing autophagy with LC3 siRNA (siLC3) sensitized NPC cells to irradiation. Furthermore, CASC19 siRNA (siCASC19) suppressed cellular autophagy by inhibiting the AMPK/mTOR pathway and promoted apoptosis through the PARP1 pathway. Our results revealed for the first time that lncRNA CASC19 contributed to the radioresistance of NPC by regulating autophagy. In significance, CASC19 might be a potential molecular biomarker and a new therapeutic target in NPC.


Sign in / Sign up

Export Citation Format

Share Document