Environmental and agronomic constraints in dryland pasture and choice of species

1985 ◽  
Vol 3 ◽  
pp. 39-43
Author(s):  
J.H. Hoglund ◽  
J.G.H. White

Hawkes Bay in the north down to North Otago, the duration and intensity of summer drought is unpredictab!e and variable. Within this region, winter temperatures are generally high enough to allow slow growth of pasture but summer drought can completely halt growth in most years, particularly on the commonly found shallow free draining soils. On these soils, moisture stress can develop very quickly because of the limited available soil water. Nearer the foothills, rainfall is greater and severe moisture stress less common. On sunny aspects in hill country however soils are commonly below wilting point for over six months of the year.

2020 ◽  
Vol 82 ◽  
pp. 199-209
Author(s):  
Mike B. Dodd ◽  
Katherine N. Tozer ◽  
Iris Vogeler ◽  
Rose Greenfield ◽  
David R. Stevens ◽  
...  

The improvement in forage quality and quantity of summer-dry hill country pasture resulting from the introduction of clover is well recognised. However, ensuring the persistence of the commonly availablecultivars is challenging, in the face of seasonal moisture stress, intensive grazing, competition from established well-adapted pasture species, low soil fertility and low soil pH – conditions typical of the East Coast of the North Island. Here we quantify the value proposition associated with the introduction of white clover into a case study on a Gisborne sheep and beef farm, using a six-step process. A topographically explicit approach is taken, using an understanding of the underlying spatial variability, based on a combination of soil and pasture measurements, APSIM simulation modelling of pasture growth and farm system modelling of enterprise performance. We show that from a baseline of a typical low-fertility, diverse species hill country pasture, white clover introduction can increase spring and summer forage consumption by 17%, enabling inclusion of an additional 6-month bull finishing enterprise generating a 32% greater carcass weight production and leading to a 49% improvement in farm system EBIT. This represents a positive net present value of over $360,000 for the original investment in white clover establishment into existing pastures.


Author(s):  
B.S. Zhang ◽  
I. Valentine ◽  
P.D. Kemp

Decision tree models were applied to predict annual and seasonal pasture production and investigate the interactions between pasture production and environmental and management factors in the North Island hill country. The results showed that spring rainfall was the most important factor influencing annual pasture production, while hill slope was the most important factor influencing spring and winter production. Summer and autumn rainfall were the most important factors influencing summer and autumn production respectively. The decision tree models for annual, spring, summer, autumn and winter pasture production correctly predicted 82%, 71%, 90%, 88% and 90 % of cases in the model validation. By integrating with a geographic information system (GIS), the outputs of these decision tree models can be used as a tool for pasture management in assessing the impacts of alternative phosphorus fertiliser application strategies, or potential climate change, such as summer drought on hill pasture production. This can assist farmers in making decisions such as setting stocking rate and assessing feed supply. Keywords: data mining, decision tree, GIS, hill slope, rainfall


Author(s):  
G.B. Douglas ◽  
A.S. Walcroft ◽  
B.J. Wills ◽  
S.E. Hurst ◽  
A.G. Foote ◽  
...  

Poplar (Populus spp.) trees are planted on pastoral hill country throughout New Zealand, primarily for soil conservation. The effect of wide-spaced trees (16-100/ha) aged 8-15 years on understorey pasture growth, botanical composition, and microenvironmental characteristics, was determined at Pohangina (1997-2000) and Lawrence (1998- 2000) in the lower North and South Islands, respectively. Relative to environments without trees, at Lawrence pasture growth (13 100 kg dry matter (DM)/ha/yr) was reduced by 20% and 34% on north and south sides of trees, respectively. At Pohangina (7915 kg DM/ha/yr), trees had less influence (7% and 14% reduction) on understorey pasture growth. There were also strong seasonal effects at both sites, corresponding to when the trees were foliated. Swards at each site comprised 81-93% grass. At Lawrence, swards had similar botanical composition beneath and beyond trees. Swards on the north side of trees at Pohangina comprised relatively high grass and low legume content compared with those on the south side and in the open. Compared with open pasture, areas beneath young poplars received up to 24% less rainfall and 31% less solar irradiance, and soil water content (0-200 mm depth) was up to 33% lower in summer and autumn. At intermediate soil water contents (0.25-0.35 m3/m3), the profile of soil water content around trees during drying was frequently U-shaped, being lowest beneath the stem and increasing with distance away from the tree. Likely reasons for the pasture responses and variation in tree-pasture interactions between sites are discussed. The results will be used to model changes in tree-pasture interactions over time. Keywords: agroforestry, poplar, Populus, silvopastoralism, soil conservation, soil water, treepasture interactions


2005 ◽  
Vol 35 (11) ◽  
pp. 2743-2755 ◽  
Author(s):  
Michael J Case ◽  
David L Peterson

Information about the sensitivity to climate of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) is valuable because it will allow forest managers to maximize growth, better understand how carbon sequestration may change over time, and better model and predict future ecosystem responses to climatic change. We examined the effects of climatic variability on the growth of Douglas-fir along an elevational gradient in the North Cascade Range, Washington (USA), at annual timescales during the 20th century. Multivariate analysis and correlation analysis were used to identify climate-growth relationships. Mid-elevation chronologies were negatively correlated with growing season maximum temperature and positively correlated with growing season precipitation. In contrast, high-elevation chronologies were positively correlated with annual temperatures and negatively correlated with previous-year winter Pacific Decadal Oscillation index. Projected increases in summer temperatures will likely cause greater soil moisture stress in many forested ecosystems. The potential of extended summer drought periods over decades may significantly alter spatial patterns of productivity, thus impacting carbon storage. It is likely that the productivity of Douglas-fir in the Cascade Range will decrease at sites with shallow, excessively drained soils, south- and west-facing aspects, and steep slopes and will increase at high-elevation sites.


Author(s):  
A.D.H. Joblin

Hill country, defined as land over 15O slope, comprises 51% of the agricultural land resource and 44% of the grassland in the Northern South Island. This steeper land is assessed as carrying 20% of the current grazing stock numbers, with an estimated capacity to expand by 13 million stock units to support 31% of the region's livestock. The ability to achieve this potential will be influenced by the profitability of farming the land more intensively. At present the South Island hill and high country is farmed much more extensively than North Island hill country with net incomes of $9 and $1.5/ha respectively compared with $53 and $30/ha for hill and hard hill country in the North Island. Production output figures show similar trends. The challenge to research workers, advisers and farmers is to develop farming systems that will lead to a profitable expansion of production to the South Island hill and high country's potential. These systems will need to recognise the crucial importance of summer drought as a limiting factor to these production increases. Keywords: Hill country, slope, vegetation, production potentials, productivity, economic returns, costs, microsite pasture production, research requirements.


2016 ◽  
Vol 38 (5) ◽  
pp. 501 ◽  
Author(s):  
M. L. Mitchell ◽  
J. M. Virgona ◽  
J. L. Jacobs ◽  
D. R. Kemp

Microlaena stipoides (microlaena) is an important perennial grass in over 7 million hectares of native pastures in southern Australia and can survive and persist despite severe soil water deficits during summer. Many other pasture species survive similar conditions by relying on summer dormancy, which raises the possibility that microlaena may behave similarly. A field experiment using rainout shelters was conducted on an existing microlaena pasture in north-east Victoria. The experiment was a split-plot design with two watering treatments (‘summer storm’ or ‘summer dry’) as main plots and three defoliation treatments (nil, intense defoliation, strategic defoliation) as subplots. The ‘summer storm’ treatment resulted in the formation of new buds and tillers and increased basal cover from 1% in February to 18% in March. A glasshouse pot experiment examined the recovery of microlaena after different periods of drought and subsequent rewatering. In the pot experiment, microlaena withstood relatively short (up to 30 days) dry periods and then recovered when rewatered. Thus, it appears that microlaena is a persistent, perennial pasture plant that, although it survives very dry summers in Mediterranean areas, is not summer dormant. Microlaena does not exhibit summer dormancy in response to moisture stress and enter a quiescent stage, because normal growth is prevented by the lack of water, but it quickly recommences growth when soil water becomes available. The ability of microlaena to withstand summer soil water deficits and to recruit from seedlings make it a valuable pasture species across drought-prone environments, and this undoubtedly partly explains its very broad adaptation across eastern Australia.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Nicola Ghirardi ◽  
Giulia Luciani ◽  
...  

Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.


1995 ◽  
Vol 43 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Anatoly V. Lozhkin ◽  
Patricia M. Anderson

AbstractAlluvial, fluvial, and organic deposits of the last interglaciation are exposed along numerous river terraces in northeast Siberia. Although chronological control is often poor, the paleobotanical data suggest range extensions of up to 1000 km for the primary tree species. These data also indicate that boreal communities of the last interglaciation were similar to modern ones in composition, but their distributions were displaced significantly to the north-northwest. Inferences about climate of this period suggest that mean July temperatures were warmer by 4 to 8°C, and seasonal precipitation was slightly greater. Mean January temperatures may have been severely cooler than today (up to 12°C) along the Arctic coast, but similar or slightly warmer than present in other areas. The direction and magnitude of change in July temperatures agree with Atmospheric General Circulation Models, but the 126,000-year-B.P. model results also suggest trends opposite to the paleobotanical data, with simulated cooler winter temperatures and drier conditions than present during the climatic optimum.


2012 ◽  
Vol 39 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Maria Balota ◽  
Steve McGrath ◽  
Thomas G. Isleib ◽  
Shyam Tallury

Abstract Water deficit, i.e., rainfall amounts and distribution, is the most common abiotic stress that limits peanut production worldwide. Even though extensive research efforts have been made to improve drought tolerance in peanut, performance of genotypes largely depends upon the environment in which they grow. Based on greenhouse experiments, it has been hypothesized that stomata closure under high vapor pressure deficit (VPD) is a mechanism of soil water conservation and it has been shown that genotypic variation for the response of transpiration rate to VPD in peanut exists. The objective of this study was to determine the relationship between stomatal conductance (gs) and VPD for field grown peanut in Virginia-Carolina (VC) rainfed environments. In 2009, thirty virginia-type peanut cultivars and advanced breeding lines were evaluated for gs at several times before and after rain events, including a moisture stress episode. In 2010, eighteen genotypes were evaluated for gs under soil water deficit. In 2009, VPD ranged from 1.3 to 4.2 kPa and in 2010 from 1.78 to 3.57 kPa. Under water deficit, genotype and year showed a significant effect on gs (P  =  0.0001), but the genotype × year interaction did not. During the water deficit episodes while recorded gs values were relatively high, gs was negatively related to VPD (R2  =  0.57, n  =  180 in 2009; R2  =  0.47, n  =  108 in 2010), suggesting that stomata closure is indeed a water conservation mechanism for field grown peanut. However, a wide range of slopes among genotype were observed in both years. Genotypes with significant negative relationships of gs and VPD under water deficit in both years were Florida Fancy, Gregory, N04074FCT, NC-V11, and VA-98R. While Florida Fancy, Gregory, and NC-V11 are known to be high yielding cultivars, VA-98R and line N04074FCT are not. The benefit of stomatal closure during drought episodes in the VC environments is further discussed in this paper.


2021 ◽  
Author(s):  
Simon C. Scherrer ◽  
Christoph Spirig ◽  
Martin Hirschi ◽  
Felix Maurer ◽  
Sven Kotlarski

<p>The Alpine region has recently experienced several dry summers with negative impacts on the economy, society and ecology. Here, soil water, evapotranspiration and meteorological data from several observational and model-based data sources is used to assess events, trends and drivers of summer drought in Switzerland in the period 1981‒2020. 2003 and 2018 are identified as the driest summers followed by somewhat weaker drought conditions in 2020, 2015 and 2011. We find clear evidence for an increasing summer drying in Switzerland. The observed climatic water balance (-39.2 mm/decade) and 0-1 m soil water from reanalysis (ERA5-Land: -4.7 mm/decade; ERA5: -7.2 mm/decade) show a clear tendency towards summer drying with decreasing trends in most months. Increasing evapotranspiration (potential evapotranspiration: +21.0 mm/decade; ERA5-Land actual evapotranspiration: +15.1 mm/decade) is identified as important driver which scales excellently (+4 to +7%/K) with the observed strong warming of about 2°C. An insignificant decrease in precipitation further enhanced the tendency towards drier conditions. Most simulations of the EURO-CORDEX regional climate model ensemble underestimate the changes in summer drying. They underestimate both, the observed recent summer warming and the small decrease in precipitation. The changes in temperature and precipitation are negatively correlated, i.e. simulations with stronger warming tend to show (weak) decreases in precipitation. However, most simulations and the reanalysis overestimate the correlation between temperature and precipitation and the precipitation-temperature scaling on the interannual time scale. Our results emphasize that the analysis of the regional summer drought evolution and its drivers remains challenging especially with regional climate model data but considerable uncertainties also exist in reanalysis data sets.</p>


Sign in / Sign up

Export Citation Format

Share Document