scholarly journals In situ H-ZSM-5 Zeolite Deactivation Study in Dimethyl Ether to Hydrocarbons Transformation Reaction

2021 ◽  
Vol 7 (10) ◽  
pp. 10-16
Author(s):  
A. Sidorov ◽  
Yu. Kosivtsov ◽  
R. Brovko ◽  
V. Doluda

Today, catalytic processes for the synthetic fuel components production are of considerable interest for both scientific and industrial area. The transformation of dimethyl ether into hydrocarbons is one of the possible solutions for the development of a closed hydrocarbon cycle, in connection with which a wide study of this process is an important task of modern catalysis. The transformation of dimethyl ether into hydrocarbons occurs with the formation of heavy polyaromatic hydrocarbons, which are deposited on the surface of active centers, which in turn prevents the further occurrence of chemical processes on their surface. This article presents a study of the deactivation of zeolite H-ZSM-5 by the thermogravimetric method in situ. The results of experiments carried out in the temperature range from to 300 to 400 °C are presented. The accumulation of carbon deposits in the first hour of operation indicates the presence of an induction period due to the formation of the first layer of carbon deposits. Linear decontamination occurs when the first five weight percent of carbon deposits accumulate. Further accumulation of carbon deposits up to eight weight percent leads to a sharp decrease in the rate of conversion of dimethyl ether into hydrocarbons to 0.08 kg (DME) / (kg (Cat) h). In the first hour of operation, aromatic hydrocarbons predominate in the reaction medium; with increasing time, the concentration of aromatic hydrocarbons decreases, and the concentration of light olefins and alkanes increases due to carbonization of the catalyst surface. The concentration of heavy aromatic hydrocarbons with a number of carbon atoms equal to or greater than eleven has a maximum after 240 minutes of reaction. The decrease in the content of heavy aromatic hydrocarbons after 240 minutes of reaction can be explained by the sharp loss of surface acidity due to carbonation.

2020 ◽  
Vol 6 (5) ◽  
pp. 21-28
Author(s):  
M. Dziuba ◽  
I. Navrotskaya ◽  
R. Brovko ◽  
V. Doluda

The universally depleting reserves of traditional hydrocarbons require the development of a technology for producing synthetic hydrocarbons from renewable sources or human waste. Currently, among the possible methods for producing synthetic hydrocarbons, it is necessary to note the Fischer–Tropsch method and the method of methanol / dimethyl ether catalytic transformation. Moreover, the production of synthetic hydrocarbons from synthesis gas — the Fischer–Tropsch method, is suitable for the production of linear hydrocarbons. The hydrocarbons synthesis using methanol / dimethyl ether is suitable for the production of olefins, branched paraffins, aromatic and polyaromatic hydrocarbons. Depending on the synthesis conditions, it is possible to preferentially obtain a certain type of hydrocarbon, which significantly increases the value of this process. In this article modification of zeolite type H-ZSM-5 with zinc is studied in order to increase the yield of liquid hydrocarbons. Zeolite in acid form was treated with zinс acetate solutions of different concentrations, followed by calcination of the samples. The efficiency of the catalysts was studied in a flow tube reactor set-up, and the surface acidity of the samples was also determined. An increase in the zinc content in zeolite contributed to a decrease in the acidity of the samples and modification of their active centers. However, at high zinc content, a separate oxide phase forms, which contributes to a slight increase in acidity. Modification of zeolite with zinc leads to a decrease in the rate of transformation of dimethyl ether and the rate of liquid hydrocarbons formation. However, a general decrease in acidity and modification of zeolite with zinc contributes to a significant decrease in the amount of heavy aromatic compounds formed, with an increase in the amount of gaseous and liquid hydrocarbons being formed.


Author(s):  
S. Majid Abdoli ◽  
Mahsa Kianinia

Background: Ethylene, propylene, and butylene as light olefins are the most important intermediates in the petrochemical industry worldwide. Methanol to olefins (MTO) process is a new technology based on catalytic cracking to produce ethylene and propylene from methanol. Aims and Objective: This study aims to simulate the process of producing ethylene from methanol by using Aspen HYSYS software from the initial design to the improved design. Methods: Ethylene is produced in a two-step reaction. In an equilibrium reactor, the methanol is converted to dimethyl ether by an equilibrium reaction. The conversion of the produced dimethyl ether to ethylene is done in a conversion reactor. Changes have been made to improve the conditions and get closer to the actual process design done in the industry. The plug flow reactor has been replaced by the equilibrium reactor, and the distillation column was employed to separate the dimethyl ether produced from the reactor. Result and Conclusion: The effect of the various parameters on the ethylene production was investigated. Eventually, ethylene is


Author(s):  
Reza Yazdanpanah ◽  
Eshagh Moradiyan ◽  
Rouein Halladj ◽  
Sima Askari

Aim and Objective: The research focuses on recent progress in the production of light olefins. Hence, the common catalyst of the reaction (SAPO-34) deactivates quickly because of coke formation, we reorganized the mechanism combining SAPO-34 with a natural zeolite in order to delay the deactivation time. Materials and Methods: The synthesis of nanocomposite catalyst was conducted hydrothermally using experimental design. Firstly, Clinoptilolite was modified using nitric acid in order to achieve nano scaled material. Then, the initial gel of the SAPO-34 was prepared using DEA, aluminum isopropoxide, phosphoric acid and TEOS as the organic template, sources of Aluminum, Phosphor, and Silicate, respectively. Finally, the modified zeolite was combined with SAPO-34's gel. Results: 20 different catalysts due to D-Optimal design were synthesized and the nanocomposite with 50 weight percent of SAPO-34, 4 hours Crystallization and early Clinoptilolite precipitation showed the highest relative crystallinity, partly high BET surface area and hierarchical structure. Conclusion: Different analysis illustrated the existence of both components. The most important property alteration of nanocomposite was the increment of pore mean diameters and reduction in pore volumes in comparison with free SAPO-34. Due to low price of Clinoptilolite, the new catalyst develops the economy of the process. Using this composite, according to formation of multi-sized pores located hierarchically on the surface of the catalyst and increased surface area, significant amounts of Ethylene and Propylene, in comparison with free SAPO-34, were produced, as well as deactivation time that was improved.


2021 ◽  
Vol 52 (5) ◽  
pp. 1812-1825
Author(s):  
Sen Lin ◽  
Ulrika Borggren ◽  
Andreas Stark ◽  
Annika Borgenstam ◽  
Wangzhong Mu ◽  
...  

AbstractIn-situ high-energy X-ray diffraction experiments with high temporal resolution during rapid cooling (280 °C s−1) and isothermal heat treatments (at 450 °C, 500 °C, and 550 °C for 30 minutes) were performed to study austenite decomposition in two commercial high-strength low-alloy steels. The rapid phase transformations occurring in these types of steels are investigated for the first time in-situ, aiding a detailed analysis of the austenite decomposition kinetics. For the low hardenability steel with main composition Fe-0.08C-1.7Mn-0.403Si-0.303Cr in weight percent, austenite decomposition to polygonal ferrite and bainite occurs already during the initial cooling. However, for the high hardenability steel with main composition Fe-0.08C-1.79Mn-0.182Si-0.757Cr-0.094Mo in weight percent, the austenite decomposition kinetics is retarded, chiefly by the Mo addition, and therefore mainly bainitic transformation occurs during isothermal holding; the bainitic transformation rate at the isothermal holding is clearly enhanced by lowered temperature from 550 °C to 500 °C and 450 °C. During prolonged isothermal holding, carbide formation leads to decreased austenite carbon content and promotes continued bainitic ferrite formation. Moreover, at prolonged isothermal holding at higher temperatures some degenerate pearlite form.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3844
Author(s):  
Lijuan Li ◽  
Bingdong Li ◽  
Liwei Feng ◽  
Xiaoqiu Zhang ◽  
Yuqian Zhang ◽  
...  

In this work, Au-modified F-TiO2 is developed as a simple and efficient photocatalyst for H2O2 production under ultraviolet light. The Au/F-TiO2 photocatalyst avoids the necessity of adding fluoride into the reaction medium for enhancing H2O2 synthesis, as in a pure TiO2 reaction system. The F− modification inhibits the H2O2 decomposition through the formation of the ≡Ti–F complex. Au is an active cocatalyst for photocatalytic H2O2 production. We compared the activity of TiO2 with F− modification and without F− modification in the presence of Au, and found that the H2O2 production rate over Au/F-TiO2 reaches four times that of Au/TiO2. In situ electron spin resonance studies have shown that H2O2 is produced by stepwise single-electron oxygen reduction on the Au/F-TiO2 photocatalyst.


2011 ◽  
Vol 347-353 ◽  
pp. 3681-3684 ◽  
Author(s):  
Young Ho Kim ◽  
Su Gyung Lee ◽  
Byoung Kwan Yoo ◽  
Han Sol Je ◽  
Chu Sik Park

A SAPO-34 catalyst is well known to be one of the best catalysts for DME to olefins (DTO) reaction. Main products of the reaction were light olefins such as ethylene, propylene and butenes. However, the main problem is rapid deactivation of the SAPO-34 catalyst due to coke deposition during DTO reaction. In this study, various SAPO-34/ZrO2 catalysts added with ZrO2 were prepared for improving the lifetime and their physicochemical properties have been characterized by XRD and SEM. The DTO reaction over various SAPO-34/ZrO2 catalysts was carried out using a fixed bed reactor. All SAPO-34/ZrO2 catalysts showed similar activity and selectivity in the DTO reaction. The SAPO-34(9wt%)/ZrO2 catalyst was showed the best performance for the catalyst lifetime.


2021 ◽  
Vol 894 ◽  
pp. 45-49
Author(s):  
Rosanna Viscardi ◽  
Vincenzo Barbarossa ◽  
Raimondo Maggi ◽  
Francesco Pancrazzi

DME has been received the attention as a renewable energy due to its thermal efficiencies equivalent to diesel fuel, lower NOx emission, near-zero smoke and non-toxic. DME can be obtained by methanol dehydration over solid acid catalysts or directly from syngas over bifunctional catalysts. The catalytic dehydration of methanol to DME has been widely studied in the literature over pure or modified γ -aluminas (γ-Al2O3) and zeolites. Mesoporous silica has obtained much consideration due to its well-defined structural order, high surface area, and tunable pore diameter. In this work, sulfonic acid and aluminium modified mesoporous silica were synthesized and tested as catalysts for production of dimethyl ether from methanol. The modified silicas were studied utilizing XRD, N2 physisorption, pyridine adsorption, and scanning electronic microscopy. The effects of reaction temperature and water deactivation on the methanol selectivity and conversion to dimethyl ether were investigated. Sulfonic acid modified mesoporous silica showed higher selectivity and stability of DME than that of aluminosilicate. The grafting of mesoporous silica with sulfonic groups displayed much more enhanced hydrothermal stability than Al-MCM-41 and γ-Al2O3.


Sign in / Sign up

Export Citation Format

Share Document