scholarly journals WATER SUPPLY RESOURCES AND MANAGEMENT PRACTICES IN SARAWAK AND OTHER COUNTRIES

2016 ◽  
Vol 7 (2) ◽  
pp. 50-57
Author(s):  
Nur Rasfina Mahyan ◽  
Onni Suhaiza Selaman

The rapid urbanization faced by Sarawak has raised the concern on whether the current water supply isadequate to cater for the increasing demands in future. This study focuses on identifying the potential options of watersupply resources and management practices for Sarawak in future. The water supply resources and management practicesfrom other countries are reviewed as to provide guidance for Sarawak in improving their water supply resources andmanagement practices. The desk study is performed by collecting data and information from existing resources such asinternet, government agencies, journal papers, and published reports. In this study, five types of water resources wereconsidered to be used by studied countries including surface water, groundwater, desalinated water, rainwater and reclaimedwater. The usage of surface water is recorded as the highest among all resources for both in Sarawak and other countries. Interms of water storage system, the difference between Sarawak and other countries are not significant as they adoptedalmost the similar systems such as reservoir and well. Ideally, there are three proposed potential options regarding watersupply resources for Sarawak in future namely rainwater harvesting, desalinated water and reclaimed water. Nonetheless,most of the management practices in other countries had already been practiced by Sarawak itself but may differ in terms oftechnologies and method of applications. Thus, effective water resources management must be supported by understandingof the availability of the resource itself in order to address the probable challenges in future.

2013 ◽  
Vol 807-809 ◽  
pp. 1087-1092 ◽  
Author(s):  
Nida Chaimoon

Rainwater harvesting from roof is considered as valuable water resources. Material Flow Analysis (MFA) of water in Mahasarakham University (Khamriang Campus) shows that rainwater harvesting from roof can reduce water supply production by 7% and save more than 200,000 Bt/year for water treatment cost. The sensitivity analysis suggests that by 5% water supply conservation and 20% additional rainwater harvesting, MSU could have enough water resources. The rainwater is suitable to be substituted water for gardening due to the convenience to assemble an above ground storage tank or a pond to store harvested rainwater from roof. The current practice of rainwater is collected and discharged into drainage system and treated in wastewater treatment plant. Utilisation of rainwater harvested could reduce wastewater amount that must be treated by 9%. Rainwater harvesting and reuse should be promoted in campus in order to encourage sustainable living and water conservation policy.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1435
Author(s):  
Xinjian Guan ◽  
Pengkun Jiang ◽  
Yu Meng ◽  
Haidong Qin ◽  
Hong Lv

As an important water conservancy project, it is necessary to evaluate its water supply benefit. Based on the emergy analysis theory, a reservoir water supply benefits evaluation model (RWSBEM) was established. Firstly, the emergy transformity of natural and engineering water body was calculated. Secondly, the water resource values (WRV) of different water users (industrial, agricultural, domestic, ecological) were calculated. Finally, combined with the water supply situation of the reservoir, the various water supply benefits of the reservoir were calculated. Taking Hekoucun reservoir as an example, its ecological water supply benefit is the largest and agriculture is the smallest, followed by industry and life. The results showed that the trend of WRV was domestic > industry > ecology > agriculture, which reflected the contribution and utility of water resources in different industries. Under the condition of current water resources, the planned water supply benefits of the reservoir can be guaranteed in the wet and normal years, but in the dry years, the ecological benefit will be reduced. Therefore, the industry water-saving needs to be further strengthened, and the interannual regulation function of the reservoir should be applied more effectively to maximize the comprehensive benefits of reservoir water supply.


2018 ◽  
Vol 45 ◽  
pp. 00090 ◽  
Author(s):  
Agnieszka Stec

This paper reports results from a survey of households in Poland concerning the use of alternative sources of water. Research showed that respondents were not too inclined to replace water from the water supply with greywater and rainwater. They would be afraid of using both greywater (79%) and rainwater (60%) in their household. The biggest concern was the use of alternative sources of water for doing laundry - more than 50% of respondents identified this issue in both cases. Only 43% of respondents would like to install a greywater recycling system and much more -78% a rainwater harvesting system. For the vast majority of respondents (80%) a subsidy would be an incentive for using these systems in their household.


Hydrology ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 93 ◽  
Author(s):  
Winfred Kilonzo ◽  
Patrick Home ◽  
Joseph Sang ◽  
Beatrice Kakoi

Urbanization has caused limitations on water resources, while climate change has reduced amounts of surface water in some parts of the world. Kikuyu, a suburban area in Kiambu county, Kenya, is facing this challenge. The major challenge in the study is scarcity of potable water, resulting in inadequate water supply to Kikuyu residents. Currently, only 63.6% of the population is being supplied with water by Kikuyu Water Company, the company mandated to supply water to the area. Water demand was 2972 m3/day in 2015 and was projected to be 3834 m3/day by 2025. This has put pressure on the already exploited clean water resources, making it necessary to seek additional sources of domestic water. Storage capacity and water quality of surface water bodies, especially small reservoirs whose water can be used to ease the demand, need to be assessed for supplemental water supply. This study aimed at assessing the suitability of the abandoned quarry reservoir as a source of potable urban water by determining its storage capacity characteristics and water quality status. Volume characteristics were determined using bathymetry survey in January 2019. Water samples were collected in January and August 2019 and analyzed for chemical, physical, and bacteriological quality, as per the American Public Health Association (APHA) standard methods for water and wastewater. Parameters were evaluated based on World Health Organization (WHO) and Kenya Bureau of Standards (KEBS) guidelines for drinking water, and rated based on the drinking water quality index (WQI). The reservoir’s maximum storage capacity was found to be 128,385 m3, the surface area was 17,699 m2, and the maximum depth was 15.11 m. Nineteen of the twenty-five investigated parameters were within the acceptable standards. However, the concentrations of manganese (Mn), cadmium (Cd), iron (Fe), turbidity, total coliforms, and Escherichia coli (E. coli) were above the acceptable limits. Manganese and iron levels increased with depth. The overall WQI of the reservoir was 82.51 and 85.85 in January and August, respectively. Therefore, based on WQI rating, the water scored a good quality rating and could be used for domestic supply upon treatment. The original achievement of this study is establishment of the volume of the water in the quarry as an additional source of water to the nearby community, along with water quality status.


2013 ◽  
Vol 7 (3) ◽  
pp. 340-353 ◽  

Groundwater plays an important role for urban and agricultural water supply in northern part of Peloponnesus. Despite increasing environmental awareness in this area, groundwater is a resource that is being stressed. Groundwater provides about 80% the total quantity of water supply. Distribution of water resources is nonhomogeneous in this region. In general the eastern part is semiarid, whereas the western part is supplied with abundant water. Surface water potential in North Peloponnesus estimated to be 0.9- 1.2x109 m3 y-1. Overexploitation of groundwater and the extensive agriculture has created environmental problems in some aquifers (sea water intrusion, nitrate pollution). Seawater intrusion occurs in some coastal aquifers, where negative water balance has been established. High percentage of the examined samples exceeded the maximum admissible nitrate concentration of 50 mg l-1, set by EU for drinking water. Groundwater in urban areas has been contaminated to varying degrees. The water quality is classified into Ca-HCO3 type (fresh water) and Na-HCO3 or Na-Cl type (brackish waters) in the coastal part, due to seawater intrusion. Some recommendations are made in order to safeguard high water quality and to develop new ways of providing water source in the study area. Moreover, an integrated and comprehensive management scheme should be applied, aiming at sustainability of water resources and based on surface water and groundwater exploitation, simultaneously.


Author(s):  
Danang Aria Pranedya Baskoro ◽  
Atep Hermawan ◽  
Tri Permadi

Good management of water resources is a requirement for an area that has a high population development. Sentul City, which is an independent city in Bogor Regency which has a high population, is in an area that lacks water, because of this Sentul City requires infrastructure and policies that are able to ensure the availability of water for its residents. One of the paradigms of water management in urban areas is a water sensitive city. One of the steps in this paradigm is wastewater management and rainwater harvesting. The dynamic system modelling method is used to predict the impact of implementing several policies that will be taken to manage water resources. The objectives of this study are to build dynamic models to predict water supply and demand and to analyze policies for wastewater management and rainwater harvesting. Sentul City water demand is estimated will reach 122 105 000 m3 and a water crisis will occur in 2027. The wastewater recycle policy can inhibit the water crisis until 2030 and the negative water balance will last until 2040. Combining wastewater recycle and rainwater harvesting can increase water availability by 240% and prevent a water crisis.


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2347 ◽  
Author(s):  
Vasileios A. Tzanakakis ◽  
Nikolaos V. Paranychianakis ◽  
Andreas N. Angelakis

This paper provides an overview of the Special Issue on water supply and water scarcity. The papers selected for publication include review papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue underscores the need for a revised water management, especially in areas with demographic change and climate vulnerability towards sustainable and secure water supply. Moreover, general guidelines and possible solutions, such as the adoption of advanced technological solutions and practices that improve water use efficiency and the use of alternative (non-conventional) water resources are highlighted and discussed to address growing environmental and health issues and to reduce the emerging conflicts among water users.


Geosciences ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 312
Author(s):  
Katarzyna Kubiak-Wójcicka ◽  
Sylwia Machula

The study aims to estimate the amount of available renewable water resources in Poland in the years 1999–2018 and the extent of their use by various sectors of the national economy at the national and regional levels. In the study period, the selected meteorological elements were found to have changed, resulting in a decrease in the flows of the two largest rivers in Poland: the Vistula and the Oder. The outflow of the Vistula and Odra basins determines the size of Poland’s water resources. Poland is classified as a country of low water resources, as evidenced by the per capita amount of surface water, which in the years 1999–2018 was 1566 m3/capita. Water consumption to meet the needs of the economy and the population was stable, and averaged 283 m3/capita in this period. The analysis of water consumption by region showed that the areas with the lowest annual precipitation consume significant amounts of water for economic purposes, which may limit or destabilise socio-economic development in the region in future. Based on the difference between the amount of precipitation and water losses in the form of evaporation and water abstraction for economic purposes, maps were drawn up showing the deficit of surface water in a dry year. During periods of surface water scarcity, groundwater uptake increases. An area particularly exposed to water scarcity is central Poland.


Author(s):  
J. O. Okovido ◽  
U. Owen-Egharevba ◽  
L. O. Akhigbe

Water scarcity is still a major problem in many rural communities in Nigeria. In this study, a rain water harvesting system was designed for Ogbekpen, a rural community in Edo state, Nigeria. A conceptual model for rainwater harvesting was developed using the storm water management model (SWMM), Arcmap 10.1 software and daily rainfall data (2000-2016) obtained from the Nigerian Meteorological Agency (NIMET). Runoff, rainfall intensity and change in elevation of three designated catchment zones were taken into consideration. The results revealed that the total amount of rainwater that could be harvested annually (water supply) was 14,314,351.70 L (14,314 m3) from an overall effective rooftop area of 6025.9 m2. This was three times the annual water demand (4,317,965.60 L (4318 m3)), thus demonstrating the capability of the system to meet annual water demand. The required tank capacities for zones 1, 2 and 3 were 870,412.76 L (870 m3), 955,319.4 5L (955 m3) and 788,629.88 L (789 m3) respectively. Comparative physicochemical and microbial analysis of water from rooftops in the three zones and an existing storage well showed that the latter did not comply with drinking water quality guidelines, thus highlighting the importance of a proper conveyance and storage system to improve water quality and availability in the area.


2021 ◽  
Vol 21 (10) ◽  
pp. 3113-3139
Author(s):  
Doris E. Wendt ◽  
John P. Bloomfield ◽  
Anne F. Van Loon ◽  
Margaret Garcia ◽  
Benedikt Heudorfer ◽  
...  

Abstract. Managing water–human systems during water shortages or droughts is key to avoid the overexploitation of water resources and, in particular, groundwater. Groundwater is a crucial water resource during droughts as it sustains both environmental and anthropogenic water demand. Drought management is often guided by drought policies, to avoid crisis management, and actively introduced management strategies. However, the impact of drought management strategies on hydrological droughts is rarely assessed. In this study, we present a newly developed socio-hydrological model, simulating the relation between water availability and managed water use over 3 decades. Thereby, we aim to assess the impact of drought policies on both baseflow and groundwater droughts. We tested this model in an idealised virtual catchment based on climate data, water resource management practices and drought policies in England. The model includes surface water storage (reservoir), groundwater storage for a range of hydrogeological conditions and optional imported surface water or groundwater. These modelled water sources can all be used to satisfy anthropogenic and environmental water demand. We tested the following four aspects of drought management strategies: (1) increased water supply, (2) restricted water demand, (3) conjunctive water use and (4) maintained environmental flow requirements by restricting groundwater abstractions. These four strategies were evaluated in separate and combined scenarios. Results show mitigated droughts for both baseflow and groundwater droughts in scenarios applying conjunctive use, particularly in systems with small groundwater storage. In systems with large groundwater storage, maintaining environmental flows reduces hydrological droughts most. Scenarios increasing water supply or restricting water demand have an opposing effect on hydrological droughts, although these scenarios are in balance when combined at the same time. Most combined scenarios reduce the severity and occurrence of hydrological droughts, given an incremental dependency on imported water that satisfies up to a third of the total anthropogenic water demand. The necessity for importing water shows the considerable pressure on water resources, and the delicate balance of water–human systems during droughts calls for short-term and long-term sustainability targets within drought policies.


Sign in / Sign up

Export Citation Format

Share Document