scholarly journals ANALISA BENTUK PERMUKAAN PELAT PENYERAP SPONGE TERHADAP KINERJA SOLAR STILL DOUBLE SLOPE TIPE V

2020 ◽  
Vol 3 (01) ◽  
pp. 17-22
Author(s):  
Alfin Amanda Alfin amanda ◽  
Nova R. Ismail ◽  
M. Agus Sahbana

This study aims to determine the surface shape of the sponge absorbent plate to the performance of the solar still double slope type V. The surface shape of the sponge absorbent plate uses sponge models of triangles, fins, waves and flat with a thickness of 5 cm. experimental Tests methods use direct solar radiation and using sea water is used as raw material. The experiment produced 4,527 liters of condensate water with highest solar still efficiency of 50.14% using a sponge wave absorber plate with an area of 13,940.76 cm2. The Sea water disability to flow capillary to the surface of the absorbent plate affecting the performance of solar still.

2019 ◽  
Vol 2 (02) ◽  
pp. 25-30
Author(s):  
Purbo Suwandono ◽  
Nova Risdiyanto Ismail

Based on previous research, research on the development of solar distillation models is needed. Development of absorbent plates (absorber) using cast concrete material with fin, wave and flat models as a comparison. The fin and wave absorber plates can expand the surface, thereby increasing the intensity of solar radiation received by the absorber. Cast concrete is a porous material that can absorb sea water and make a thin layer, making it easier for the evaporation process and can improve solar distillation performance In this study using the experimental method. Solar still research by examining the surface of a cast concrete absorber plate. The surface of the absorbent plate used is the fin, wave and flat / conventional models. Cast concrete uses stone, iron sand, PCC cement and water. The study used variations in water volume The research resulted in the surface shape of the fin model can increase the productivity of fresh water and the efficiency of solar still using a plate absorbent fin model is higher than the wave and flat models. A smaller volume of sea water can increase productivity higher than a larger volume of sea water.


2019 ◽  
Vol 30 (6) ◽  
pp. 3183-3198 ◽  
Author(s):  
Hamid Reza Goshayeshi ◽  
Mohammad Reza Safaei

Purpose Solar-driven water desalination technologies are rapidly developing with various links to other renewable sources. However, the efficiency of such systems severely depends on the design parameters. This paper presents results from an investigation on the effect of the glass cover inclination angle on the performance of two stepped solar still geometries (flat and convex) and the amount of produced distilled water. Design Methodology Approach Studied inclination angles of 25°, 27.5°, 30°, 32.5° and 35° were chosen, while other design parameters were fixed. Findings The investigation showed that the unit with the convex absorber plate had higher average water daily production rate, compared to the output of the flat absorber plate unit. The results also depicted that the inclination angle of the still has a noticeable effect on the performance of solar stills. The value of the critical angle is 32.5°, and the higher inclination angle results in less heat transfer coefficient. This value can be used for design purposes and erases the typical assumption to use lower angles to optimize the productivity of the still. Practical Implications Finally, obtained data were used to correlate the Nusselt number for the flat and convex surfaces with different inclination angles of the glass cover. Originality Value The outcome of this investigation may find applications to develop highly efficient solar stills to secure more drinkable water in warm, dry lands.


2019 ◽  
Vol 8 (4) ◽  
pp. 1780-1785

Solar stills absorb solar radiation convert brackish water into distilled water. In this project, a comparative analysis between the properties of distilled water from solar still and potable water from reverse osmosis process has been carried out. Two metals (Aluminium and GI sheet) and Granite stone are used as absorber plates. The water properties collected from three different absorber plates are compared with the potable water that obtained from reverse osmosis process. Based on the amount of water collected, thermal conductivity is analyzed between three absorber plate materials. An analysis on pH value, total dissolved solids, hardness dissolved oxygen between distilled water from solar still and potable water from reverse osmosis process is also evaluated.


1995 ◽  
Vol 32 (2) ◽  
pp. 45-52 ◽  
Author(s):  
H. Z. Sarikaya ◽  
A. M. Saatçi

Total coliform bacteria have been chosen as the indicator organism. Coliform die-away experiments have been carried out in unpolluted sea water samples collected at about 100 m off the coastline and under controlled environmental conditions. The samples were transformed into one litre clean glass beakers which were kept at constant temperature and were exposed to the solar radiation. The membrane filter technique was used for the coliform analysis. The temperature ranged from 20 to 40° C and the dilution ratios ranged from 1/50 to 1/200. Coliform decay rate in the light has been expressed as the summation of the coliform decay rate in the dark and the decay rate due to solar radiation. The solar radiation required for 90 percent coliform removal has been found to range from 17 cal/cm2 to 40 cal/cm2 within the temperature range of 25 to 30° C. Applying the linear regression analysis two different equations have been given for the high (I>10 cal/cm2.hour) and low solar intensity ranges in order to determine the coliform decay rate constant as a function of the solar intensity. T-90 values in the light have been found to follow log-normal distribution with a median T-90 value of 32 minutes. The corresponding T-90 values in the dark were found to be 70-80 times longer. Coliform decay rate in the dark has been correlated with the temperature.


Author(s):  
Krzysztof Nadolny ◽  
Wojciech Kapłonek ◽  
Marzena Sutowska ◽  
Paweł Sutowski ◽  
Piotr Myśliński ◽  
...  

AbstractRaw pine wood processing and especially its mechanical processing constitute a significant share among technological operations leading to obtaining a finished product. Stable implementation of machining operations, ensuring long-term repeatable processing results depends on many factors, such as quality and invariability of raw material, technical condition of technological equipment, adopted parameters of work, qualifications and experience of operators, as well as preparation and properties of the machining tools used. It seems that the greatest potential in the search for opportunities to increase the efficiency of machining operations has the modification of machining tools used in it. This paper presents the results of research work aimed at determining how the life of cutting tools used in planing operations of wet pine wood is affected by the application of chromium aluminum nitride (AlCrN) coating to planar industrial planing knives in the process of physical vapour deposition. For this purpose operational tests were carried out under production conditions in a medium-sized wood processing company. The study compares the effective working time, rounding radius, the profile along the knife (size of worn edge displacement, wear area of the cutting edge), selected texture parameters of the planar industrial planing knife rake face and visual analyses of cutting edge condition of AlCrN-coated planar knives and unmodified ones. The obtained experimental results showed the possibility of increasing the life of AlCrN-coated knives up to 154% compared to the results obtained with uncoated ones. The proposed modification of the operational features of the knives does not involve any changes in the technological process of planing, does not require any interference with the machining station nor its parameters, therefore enabling rapid and easy implementation into industrial practice.


2019 ◽  
Vol 91 ◽  
pp. 05006
Author(s):  
Rami Qaoud ◽  
Alkama Djamal

The urban fabric of the desert cities is based on the principle of reducing the impact of urban canyons on direct solar radiation. Here comes this research, which is based on a comparative study of the periods of direct solarisation and values of the solar energy of urban canyons via two urban fabrics that have different building densities, where the ratio between L/W is different. In order to obtain the real values of the solar energy (thermal, lighting), the test field was examined every two hours, each three consecutive days. The measurement stations are positioned by the three types of the relationship between L/W, (L≥2w, L=w, L≤0.5w). According to the results, we noticed and recorded the difference in the periods of direct solarization between the types of urban engineering canyons, reaching 6 hours a day, the difference in thermal values of air, reaching 4 °C, and the difference in periods of direct natural lighting, reaching 6 hours. It should be noted that the role of the relationship between L/W is to protect the urban canyons by reducing the impact of direct solar radiation on urban canyons, providing longer hours of shading, and reducing solar energy levels (thermal, lighting) at the urban canyons. This research is classified under the research axis (the studies of external spaces in the urban environment according to the bioclimatic approach and geographic approach). But this research aims to focus on the tracking and studying the distribution of the solar radiation - thermal radiation and lighting radiation - in different types of street canyons by comparing the study of the direct solarization periods of each type and the quantity of solar energy collected during the solarization periods.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Jesús García ◽  
Iván Portnoy ◽  
Ricardo Vasquez Padilla ◽  
Marco E. Sanjuan

Variation in direct solar radiation is one of the main disturbances that any solar system must handle to maintain efficiency at acceptable levels. As known, solar radiation profiles change due to earth's movements. Even though this change is not manipulable, its behavior is predictable. However, at ground level, direct solar radiation mainly varies due to the effect of clouds, which is a complex phenomenon not easily predictable. In this paper, dynamic solar radiation time series in a two-dimensional (2D) spatial domain are obtained using a biomimetic cloud-shading model. The model is tuned and compared against available measurement time series. The procedure uses an objective function based on statistical indexes that allow extracting the most important characteristics of an actual set of curves. Then, a multi-objective optimization algorithm finds the tuning parameters of the model that better fit data. The results showed that it is possible to obtain responses similar to real direct solar radiation transients using the biomimetic model, which is useful for other studies such as testing control strategies in solar thermal plants.


2014 ◽  
Vol 592-594 ◽  
pp. 2409-2415 ◽  
Author(s):  
S. Naga Sarada ◽  
Banoth Hima Bindu ◽  
Sri Rama R. Devi ◽  
Ravi Gugulothu

In recent years with the exacerbation of energy shortage, water crisis increases around the world. With the continuous increase in the level of greenhouse gas emissions, the use of various sources of renewable energy is increasingly becoming important for sustainable development. Due to the rising oil price and environmental regulations, the demand of utilizing alternative power sources increased dramatically. Alternative energy and its applications have been heavily studied for the last decade. Energy and water are essential for mankind that influences the socioeconomic development of any nation. Pure water resources become more and more scarce every day as rivers, lakes wells and even seawater pollution rapidly increases. Solar energy is one promising solution to secure power and potable water to future generation. The process of distillation can be used to obtain fresh water from salty, brackish or contaminated water. Water is available in different forms such as sea water, underground water, surface water and atmospheric water. Clean water is essential for good health. The search for sustainable energy resources has emerged as one of the most significant and universal concerns in the 21st century. Solar energy conversion offers a cost effective alternative to our traditional usages. Solar energy is a promising candidate in many applications. Among the alternative energy sources used for electricity production, wind and solar energy systems have become more attractive in recent years. For areas where electricity was not available, stand alone wind and solar systems have been increasingly used. The shortage of drinking water in many countries throughout the world is a serious problem. Humankind has depended for ages on river, sea water and underground water reservoirs for its fresh water needs. But these sources do not always prove to be useful due to the presence of excessive salinity in the water. To resolve this crisis, different methods of solar desalination have been used in many countries. Distillation is a well known thermal process for water purification, most importantly, water desalination. Most of the conventional water distillation processes are highly energy consuming and require fossil fuels as well as electric power for their operation. Single basin solar still is a popular solar device used for converting available brackish or waste water into potable water. Because of its lower productivity, it is not popularly used. Numbers of works are under taken to improve the productivity and efficiency of the solar still. There are large numbers of PCMs that melt and solidify at wide range of temperatures, making them attractive in a number of applications. PCMs have been widely used in latent heat thermal storage systems for heat pumps, solar engineering and spacecraft thermal control applications. The use of PCMs for heating and cooling applications for buildings has been investigated within the past decade. The experimental results computed in the field of water distillation process using solar energy in the presence of energy storage materials sodium sulphate and sodium acetate are discussed in this paper. Keywords: solar energy, saline water, distillation, phase change material.


Sign in / Sign up

Export Citation Format

Share Document