scholarly journals Produksi Crude Selulase dari Bahan Baku Ampas Tebu Menggunakan Kapang Phanerochaete chrysosporium

2017 ◽  
Vol 1 (1) ◽  
pp. 17
Author(s):  
Sri Rulianah ◽  
Zakijah Irfin ◽  
Mufid Mufid ◽  
Prayitno Prayitno

Bagasse mengandung selulosa yang cukup tinggi sehingga berpotensi sebagai bahan baku produksi crude selulase menggunakan kapang Phanerochaete chrysosporium. Kapang ini memiliki kemampuan untuk memproduksi enzim selulase dari substrat yang mengandung selulosa dan juga menghasilkan enzim yang dapat memecah lignin sehingga tidak perlu dilakukan proses delignifikasi. Tujuan dari penelitian ini adalah untuk memanfaatkan limbah ampas tebu sebagai bahan baku pembuatan crude selulase menggunakan kapang Phanerochaete chrysosporium dan mengetahui pengaruh penambahan konsentrasi substrat dan waktu fermentasi terhadap aktivitas crude selulase yang dihasilkan. Penelitian ini dilakukan dengan cara mengeringkan dan memperkecil ukuran ampas tebu, meremajakan kapang Phanerocheate chrysoporium, membuat inokulum dalam media cair, memfermentasi ampas tebu sesuai dengan variabel, dengan media Nitrogen Limited Media (NLM) menggunakan kapang Phanerocheate chrysoporium. Hasil fermentasi disaring, dan filtratnya dianalisa aktivitasnya sebagai crude selulase. Variabel dalam penelitian ini adalah waktu fermentasi 9, 11, 13, 15 dan 17 hari dan konsentrasi ampas tebu sebagai media: 5, 6, dan 7 % b/v. Ekstrak kasar selulase (crude) yang dihasilkan disaring menggunakan filter vakum, dan aktivitas filtrat (crude cellulase) diuji dengan pereaksi DNS (dinitro salicylic acid) dengan menggunakan spektrofotometer UV-Vis. Hasil penelitian menunjukkan bahwa aktivitas selulase tertinggi diperoleh pada variabel konsentrasi ampas tebu sebesar 7% b/v dan waktu inkubasi selama 17 hari yaitu sebesar 91.304 U/mL.Bagasse contain high cellulose which potentially to be used to raw material for producing cellulase enzyme using fungi Phanerochaete chrysosporium. This fungus has ability to produce cellulase enzymes from substrates which contain cellulose and also produce enzymes that can degrade lignin content so it didn’t need the delignification process. The objective of this study was to convert cellulose in bagasse to be crude cellulase enzymes by using Phanerochaete chrysosporium and determine the effect of substrate concentration and fermentation time to the enzyme activity. This research was conducted by drying and reducing the bagasse particle size, rejuvenating mold Phanerocheate chrysoporium, making inoculum in liquid medium, fermenting bagasse in accordance with the variable, with media NLM (nitrogen limited media) using Phanerocheate chrysoporium. Fermentation results were filtered, and it was analyzed the activity of crude cellulase. The variable in this study was the time of fermentation 9, 11, 13, 15, and 17 days and substrate concentration: 5, 6, and 7 % b/v. Crude cellulose was filtered and was analyzed the enzyme activity by DNS (dinitro salicylic acid) reagent, using UV-Vis spectrophotometer. The best result of this study was the crude cellulase with highest activity 91,304 U/mL for 7 % substrate concentration with fermentation time 17 days.

2018 ◽  
Vol 156 ◽  
pp. 01010 ◽  
Author(s):  
Siti Maftukhah ◽  
Abdullah Abdullah

Rice straw is one of very abundant waste of agricultural and has not utilized maximally. This waste contain cellulose and potential in the manufacture of cellulase enzymes. Research on the production of cellulase enzyme from lignocellulose has been done a lot of enzyme activity is still low. This research using cellulose is 71.95% and conducted with 6 stages. First, the preparation of raw material. Second, the decrease of lignin content with alkali pretreatment. Third, the breeding of fungi Aspergillus niger ITBCC L74 . Fourth, incubation in the inoculum. Fifth, the production of cellulase enzyme by solid fermentation method. Finally, the analysis includes protein content, enzyme activity, enzyme characterization and kinetics of enzymatic reactions. The highest enzyme activity of this study is 3.12 U/ml and protein content is 0.34 mg/ml with fermentation time is 4 day and water content is 75%. In enzyme characterization obtained optimum pH and temperature are 4 and 60°C, respectively. And obtained paramatic kinetic are Vmax and Km for 40, 50, 60 and 70°C temperature are Vmax: 6.42; 4.7; 5.82 and 4.46 U/ml and Km : 1.32; 0.38; 0.32; and 0.12%, respectively.


2015 ◽  
Vol 16 (1) ◽  
pp. 1 ◽  
Author(s):  
Nora Idiawati ◽  
Elliska Murni Harfinda ◽  
Lucy Arianie

Production of cellulase by Aspergillus niger was carried out by growing the cultureson sago waste. Sago waste containscellulose that has not been used optimally. Cellulose is a polysaccharide consisting of glucose monomers linked by β-1,4-glycosides bonds. Glycoside bonds in cellulose can be enzymatically hydrolyzed into glucose with cellulase enzymes. Solid fermentation used to produce cellulase on sago waste as substrate was influenced by pH (3 to 6), moisture content(40% to 85%), and fermentation time (4 to 10 days). Products of the cellulase enzyme activity was measured by phenolsulfuricacid method. The results showed that the highest cellulase enzyme activity was 0.172 U/mL obtained at 85%moisture content, pH 5, and 8 days of fermentation time.


2020 ◽  
Vol 21 (5) ◽  
Author(s):  
Roni Pazla ◽  
Novirman Jamarun ◽  
Fauzia Agustin ◽  
Mardiati Zain ◽  
Arief Arief ◽  
...  

Abstract. Pazla R, Jamarun N, Agustin F, Zain M, Cahyani NO. 2020. Effects of supplementation with phosphorus, calcium and manganese during oil palm frond fermentation by Phanerochaete chrysosporium on ligninase enzyme activity. Biodiversitas 21: 1833-1838. The objective of this study was to evaluate the effects of supplementation with phosphorus (P) in combination with calcium (Ca) and manganese (Mn) during oil palm frond (OPF) fermentation by Phanerochaete chrysosporium on ligninase enzyme activity and lignin degradation. This study was carried out using a randomized complete design with 3 treatments (addition of P, Ca and Mn) and 5 replicates. The following treatments were performed: T1 (P 1000 + Ca 2000 + Mn 150 ppm), T2 (P 1500 + Ca 2000 + Mn 150 ppm), and T3  (P 2000 + Ca 2000 +Mn 150 ppm). The data were subjected to an analysis of variance (ANOVA), and differences between treatment means were tested using Duncan's multiple range test (DMRT). The parameters measured were as follows: lignin peroxidase (LiP) activity (U/mL), manganese peroxidase (MnP) activity (U/mL), crude protein (CP) content (%), crude fiber (CF) content (%) and the decrease in lignin (%). The results revealed a significant increase in LiP activity and CP content and a decrease in the lignin content (p<0.05) by the addition of P in the T3 treatment. However, the treatment nonsignificantly increased (p>0.05) MnP activity and significantly decreased (P<0.05) the CF content. In conclusion, supplementation of the OPF fermentation process with P 2000, Ca 2000, and Mn 150 ppm resulted in the highest ligninase enzyme activity and in decreased lignin content.


2020 ◽  
Vol 4 (2) ◽  
pp. 19
Author(s):  
Netty - Herawati

Elephant gass is cattle feed that contains good nutrition. One of its uses is converted into an energy source in the form bioethanol, Elephant grass has a high cellulose content reaching 40,85%, therefore elephant grass has the potential to be used as raw material in manufacture of bioethanol through the process of acid hydrolysis and fermentation. In research on percent yield of bioethanol from elephant grass chemically carried out at fixed conditions : grass weight 100 gr, temperature 100oC, water 1 liter, H2SO4 30 ml, hydrolysis timw 2 hours and conditions change : fermentation time 4,6,8 (day), saccharomyces cerevisiae starter 7%, 9%, 11%, 13%, HCl and H2SO4 catalys. From the research on chemical bioethanol production from elephant grass we got the best percent yield at 6 days of fermentation, 11% saccharomyces cerevisiae, HCl catalys which was 17,30%Keywords: bioethanol, fermentation, elephant grass,


2020 ◽  
Vol 4 (1) ◽  
pp. 81
Author(s):  
Sri Rulianah ◽  
Prayitno Prayitno ◽  
Christyfani Sindhuwati ◽  
Dessi Ria Ambar Ayu ◽  
Khalimatus Sa’diyah

Limbah Kayu Mahoni merupakan limbah pertanian jenis kayu keras yang mengandung lignoselulosa (lignin, selulosa, hemiselulosa) yang cukup tinggi. Selulosa sangat berpotensi untuk didegradasi oleh Phanerochaete chrysosporium menjadi glukosa. Tujuan penelitian ini untuk mengetahui pengaruh lama fermentasi dan penambahan serbuk Kayu Mahoni terhadap penurunan kadar lignin pada fermentasi limbah Kayu Mahoni menggunakan kapang Phanerochaete chrysosporium. Penelitian dilakukan dengan cara mengeringkan dan mengecilkan ukuran limbah Kayu Mahoni, kemudian melakukan proses fermentasi limbah Kayu Mahoni dengan Phanerochaete chrysosporium dengan rentang waktu 9, 11, 13, 15, dan 17 hari, dan penambahan limbah serbuk Kayu Mahoni sebanyak 5, 6 dan 7%. Sebelum dan sesudah proses fermentasi dilakukan analisa kadar lignin. Hasil terbaik dari penelitian yaitu penurunan kadar lignin sebesar 85,33 % diperoleh pada lama fermentasi 17 hari dan penambahan serbuk Kayu Mahoni sebanyak 5 %.Mahogany wood waste is a type of hard wood agricultural waste containing lignocellulose which is quite high. In mahogany wood waste also contains lignin which is quite high, so the level of lignin must be reduced so that the cellulose can be used as glucose. Phanerochaete chrysosporium is a type of mold that is able to degrade lignin, cellulose and hemicellulose simultaneously. The purpose of this study was to determine the effect of fermentation time and the addition of mahogany wood waste to the reduction of lignin content in the fermentation of mahogany wood waste using Phanerochaete chrysosporium molds. The study was conducted by drying and reducing the size of mahogany wood waste, then fermentation of mahogany wood waste with Phanerochaete chrysosporium with a span of 9, 11, 13, 15, and 17 days, and the addition of mahogany wood waste 5, 6 and 7%. Before and after the fermentation process, lignin levels were analyzed. The best results from this study were obtained at 17 days of fermentation and the addition of 5% mahogany wood powder, obtained a decrease in lignin content of 85,33 %.


2016 ◽  
Vol 36 (1) ◽  
pp. 296-301
Author(s):  
DY Tsunatu ◽  
KG Atiku ◽  
TT Samuel ◽  
BI Hamidu ◽  
DI Dahutu

The production of bio-ethanol from Rice Straw (Oryza sativa) was carried out using rice straw as a feedstock and a combination of Yeast Extracts Peptone Dextrose (YEPD)at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v) and 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v) and 2.5%(w/v) concentrations as cells for fermentation. The study determined the most suitable pre-treatment method from the following pretreatment methods; 1M NaOH and heating. IM NaOH pre-treatment gave the highest cellulose and lowest lignin content. The effects of substrate concentration values of 1g/l, 2g/l, 4g/l, 6g/l and 8g/l; with particle size of 300μm and cell loading combination of YEPD at 0.2%(w/v) 0.4%(w/v), 0.6%(w/v), 0.8%(w/v), 1%(w/v) concentrations and Saccharomyces cerevisiae (yeast) at 0.5% (w/v), 1%(w/v), 1.5%(w/v), 2%(w/v), 2.5%(w/v) on the fermentation process were investigated to obtain optimum conditions of fermentation. The optimum conditions of fermentation were obtained at temperature of 330C, pH value of 4.0, substrate concentration of 4g/l, particle size 300μm and YEPD to yeast ratio of 0.8/1.5 after 72 hours of fermentation time. Also substrate concentration of 4g/l, gave highest bioethanol yield of 49.50%. http://dx.doi.org/10.4314/njt.v36i1.36


2019 ◽  
Vol 16 (2) ◽  
pp. 80
Author(s):  
Sumarni Nompo ◽  
Anja Meryandini ◽  
Titi Candra Sunarti

<p>Fround Sagu adalah pucuk batang sagu yang masih dibungkus oleh pelepah dan tidak diamnfaatkan oleh industri pengolahan sagu. Fround sagu memiliki kandungan serat dengan kandungan selulosa yang tinggi serta berpotensi dijadikan bahan baku untuk produksi selulase. Enzim selulase diproduksi melalui kultivasi substrat cair frond sagu oleh Aktinomiset. Subtart berupa tepung sagu dan ampas frond sagu, diinokulasi oleh isolat HJ4 (3b) dan HJ5 (4b). Kedua isolat diremajakan dalam medium ISP-4 selama 5 hari, kemudian diinokulasikan ke dalam media tepung frond sagu dan ampas frond dan diinkubasi dalam shaker pada suhu runag selama 9 hari. Kedua isolat Aktinomiset mampu menghasilkan enzim selulase pada kedua substrat dan metode kultivasi. Isolat HJ4 (3b) dan HJ4 (5b) pada perlakuan kultivasi substrat padat ampas frond sagu menghasilkan aktivitas spesifik yaitu endoglukase (CMCase) tertinggi yaitu 0.314 U mg-1 dan 0.294 U mg-1 dan aktivitas spesifik enzim eksoglukanase (FPase) yaitu 0.269 U mg-1 dan 0.258 U mg-1, sedangkan pada perlakuan kultivasi substat padat menggunakan tepung frond sagu dihasilkan aktivitas spesifik endoglukanase masing-masing sebesar 0.258 U mg-1 dan 0.254 U mg-1 serta aktivitas spesifik eksoglukanase 0.205 U mg-1 dan 0.198 U mg-1.</p><p> </p><p><strong>Production of Cellulase Enzyme by Actinomycet Using Sago Frond</strong></p><p>Sago frond is the upper part of sago trunk which is still wrapped by leaflet, and is not used by the sago processing industry. Sago frond contains fiber with high cellulose content that could potentially be used by as raw material for cellulase production. Cellulase enzymes were produced through both solid-state and submerged cultivation of sago frond by Actinomicycetes. Two substrates, sago frond flour and pulp of sago fronds, were inoculated by isolate HJ4 (3b) and HJ4 (5b). Both isolates were rejuvenated in Sp-4 medium for 5 days, then were inoculated into substrate of frond flour and hampas, and were incubated in a shaker at room temperature for 9 days. Both Actinomycetes isolates were able to produce cellulase enzymes by using both substrates and cultivation methods. The isolates of HJ4 (3b) and HJ4 (5b) by using pulp and solid-state cultivation produced the highest endoglucanase (CMCase) specific activity of 0.294 U mg-1 and 0.276 U mg-1 and exoglucanase (FPase) substrate specific activity os 0.252 U mg-1 and 0.241 U mg-1, while in the solid-state cultivation and by using sago fronds flour resulted in specific endoglucanase activities which were 0.242 U mg-1 and 0.238 U mg-1 and exoglucanase specific activities 0.192 U mg-1 and 0.185 U mg-1, respectively.</p>


2019 ◽  
Vol 21 (2) ◽  
pp. 105
Author(s):  
Yuniwaty Halim ◽  
Hardoko Hardoko ◽  
Reinald Febryanto Pengalila

This research aimed to determine the best fermentation condition, consists of pH, temperature, fermentation time and substrate concentration, in N-acetylglucosamine production from shrimp shells using crude extracellular chitinase obtained from Mucor circinelloides mould. The method used was experimental method with fermentation treatment of different pH (5, 6, 7, 8 and 9) and temperature (30, 40, 50, 60, 70 and 80°C). The optimal pH and temperature of fermentation obtained was used to determine the maximum substrate concentration (0.5, 1, 1.5 and 2%) and fermentation time (2, 4, 6 and 24 hours) to produce the highest concentration of N-acetylglucosamine. The optimal pH for fermentation was 8, with chitinase activity of 4.38±0.06 U/ml, while the optimal temperature was 50°C with enzyme activity of 5.42±0.06 U/ml. Substrate concentration and fermentation time affected the N-acetylglucosamine production. The optimal fermentation condition was obtained with substrate concentration of 1.5% and fermentation time of 2 hours resulted to N-acetyl Glucosamine concentration of 2195.83±15.14 ppm.


Molekul ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. 56
Author(s):  
Devi Silsia ◽  
Ridwan Yahya ◽  
Mucharomah Mucharomah

Optimation biokraft of fungi P. Chrysosporium through elongated incubation time on mixed stem and branch waste mangium is a solution to solve the environmental pollution problem, low quality of pulp and limited raw material. Effect of P. Chrysosporium 10 % concentration and 45 days incubation time on pre research could not decrease lignin optimally and exstractive degradation had not occured yet. The aims of the study were to observe the effect of incubation time extension, and to determine the best incubation time of P. Chrysosporium applied at 10 % concentration based on the chemical component percentage, 45, 60 and 75 days on mixed stem and branch as raw material for pulp. Results showed that increasing incubation time decreased extractive and lignin content and increased holocelulosa and alpha celulosa content. Mixed stem and branch with 10% amount and 75 day incubation time of P. Chrysosporium gave the best results for raw material of pulp.


Sign in / Sign up

Export Citation Format

Share Document