scholarly journals Colorectal Cancer Cell-Derived Small Extracellular Vesicles Educate Human Fibroblasts to Stimulate Migratory Capacity

Author(s):  
Stefano Piatto Clerici ◽  
Maikel Peppelenbosch ◽  
Gwenny Fuhler ◽  
Sílvio Roberto Consonni ◽  
Carmen Veríssima Ferreira-Halder

Colorectal cancer (CRC) is in the top 10 cancers most prevalent worldwide, affecting equally men and women. Current research on tumor-derived extracellular vesicles (EVs) suggests that these small extracellular vesicles (sEVs) play an important role in mediating cell-to-cell communication and thus potentially affecting cancer progression via multiple pathways. In the present study, we hypothesized that sEVs derived from different CRC cell lines differ in their ability to reprogram normal human fibroblasts through a process called tumor education. The sEVs derived from CRC cell lines (HT29 and HCT116) were isolated by a combination of ultrafiltration and polymeric precipitation, followed by characterization based on morphology, size, and the presence or absence of EV and non-EV markers. It was observed that the HT29 cells displayed a higher concentration of sEVs compared with HCT116 cells. For the first time, we demonstrated that HT29-derived sEVs were positive for low-molecular-weight protein tyrosine phosphatase (Lmwptp). CRC cell-derived sEVs were uptake by human fibroblasts, stimulating migratory ability via Rho-Fak signaling in co-incubated human fibroblasts. Another important finding showed that HT29 cell-derived sEVs are much more efficient in activating human fibroblasts to cancer-associated fibroblasts (CAFs). Indeed, the sEVs produced by the HT29 cells that are less responsive to a cytotoxic agent display higher efficiency in educating normal human fibroblasts by providing them advantages such as activation and migratory ability. In other words, these sEVs have an influence on the CRC microenvironment, in part, due to fibroblasts reprogramming.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Caihong Wen ◽  
Xiaoqing Feng ◽  
Honggang Yuan ◽  
Yong Gong ◽  
Guangsheng Wang

Abstract Background Circular RNAs (circRNAs) feature prominently in tumor progression. However, the biological function and molecular mechanism of circ_0003266 in colorectal cancer (CRC) require further investigation. Methods Circ_0003266 expression in 46 pairs CRC tissues / adjacent tissues, and CRC cell lines was detected by quantitative real-time polymerase chain reaction (qRT-PCR); after circ_0003266 was overexpressed or knocked down in CRC cells, cell proliferation, apoptosis, migration, and invasion were evaluated by the cell counting kit-8 (CCK-8), flow cytometry, and Transwell assays, respectively; the interaction among circ_0003266, miR-503-5p, and programmed cell death 4 (PDCD4) was confirmed using bioinformatics analysis and dual-luciferase reporter assay; PDCD4 protein expression in CRC cells was quantified using Western blot. Results Circ_0003266 was significantly lowly expressed in CRC tissues and cell lines. Circ_0003266 overexpression markedly repressed CRC cell proliferation, migration, and invasion, and accelerated the cell apoptosis, but its overexpression promoted the malignant phenotypes of CRC cells. PDCD4 was a direct target of miR-503-5p and circ_0003266 promoted PDCD4 expression by competitively sponging miR-503-5p. Conclusion Circ_0003266 suppresses the CRC progression via sponging miR-503-5p and regulating PDCD4 expressions, which suggests that circ_0003266 may serve as a novel target for the treatment of CRC.


2018 ◽  
Author(s):  
Yahui Ji ◽  
Dongyuan Qi ◽  
Linmei Li ◽  
Haoran Su ◽  
Xiaojie Li ◽  
...  

AbstractExtracellular vesicles (EVs) are important intercellular mediators regulating health and disease. Conventional EVs surface marker profiling, which was based on population measurements, masked the cell-to-cell heterogeneity in the quantity and phenotypes of EVs secretion. Herein, by using spatially patterned antibodies barcode, we realized multiplexed profiling of single-cell EVs secretion from more than 1000 single cells simultaneously. Applying this platform to profile human oral squamous cell carcinoma (OSCC) cell lines led to deep understanding of previously undifferentiated single cell heterogeneity underlying EVs secretion. Notably, we observed the decrement of certain EV phenotypes (e.g. CD63+EVs) were associated with the invasive feature of both OSCC cell lines and primary OSCC cells. We also realized multiplexed detection of EVs secretion and cytokines secretion simultaneously from the same single cells to investigate multidimensional spectrum of intercellular communications, from which we resolved three functional subgroups with distinct secretion profiles by visualized clustering. In particular, we found EVs secretion and cytokines secretion were generally dominated by different cell subgroups. The technology introduced here enables comprehensive evaluation of EVs secretion heterogeneity at single cell level, which may become an indispensable tool to complement current single cell analysis and EV research.SignificanceExtracellular vesicles (EVs) are cell derived nano-sized particles medicating cell-cell communication and transferring biology information molecules like nucleic acids to regulate human health and disease. Conventional methods for EV surface markers profiling can’t tell the differences in the quantity and phenotypes of EVs secretion between cells. To address this need, we developed a platform for profiling an array of surface markers on EVs from large numbers of single cells, enabling more comprehensive monitoring of cellular communications. Single cell EVs secretion assay led to previously unobserved cell heterogeneity underlying EVs secretion, which might open up new avenues for studying cell communication and cell microenvironment in both basic and clinical research.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2154
Author(s):  
Meysam Khosravifarsani ◽  
Samia Ait-Mohand ◽  
Benoit Paquette ◽  
Léon Sanche ◽  
Brigitte Guérin

Maximum benefits of chemoradiation therapy with platinum-based compounds are expected if the radiation and the drug are localized simultaneously in cancer cells. To optimize this concomitant effect, we developed the novel chemoradiotherapeutic agent [64Cu]Cu-NOTA-C3-TP by conjugating, via a short flexible alkyl chain spacer (C3), a terpyridine platinum (TP) moiety to a NOTA chelator complexed with copper-64 (64Cu). The decay of 64Cu produces numerous low-energy electrons, enabling the 64Cu-conjugate to deliver radiation energy close to TP, which intercalates into G-quadruplex DNA. Accordingly, the in vitro internalization kinetic and the cytotoxic activity of [64Cu]Cu-NOTA-C3-TP and its derivatives were investigated with colorectal cancer (HCT116) and normal human fibroblast (GM05757) cells. Radiolabeling by 64Cu results in a >55,000-fold increase of cytotoxic potential relative to [NatCu]Cu-NOTA-C3-TP at 72 h post administration, indicating a large additive effect between 64Cu and the TP drug. The internalization and nucleus accumulation of [64Cu]Cu-NOTA-C3-TP in the HCT116 cells were, respectively, 3.1 and 6.0 times higher than that for GM05757 normal human fibroblasts, which is supportive of the higher efficiency of the [64Cu]Cu-NOTA-C3-TP for HCT116 cancer cells. This work presents the first proof-of-concept study showing the potential use of the [64Cu]Cu-NOTA-C3-TP conjugate as a targeted chemoradiotherapeutic agent to treat colorectal cancer.


1993 ◽  
Vol 13 (10) ◽  
pp. 6036-6043
Author(s):  
T Ogata ◽  
D Ayusawa ◽  
M Namba ◽  
E Takahashi ◽  
M Oshimura ◽  
...  

Using nontumorigenic immortalized human cell lines KMST-6 (KMST) and SUSM-1 (SUSM), we attempted to identify the chromosome that carries a putative senescence-related gene(s). These cell lines are the only ones that have been established independently from normal human diploid fibroblasts following in vitro mutagenesis. We first examined restriction fragment length polymorphisms on each chromosome of these immortalized cell lines and their parental cell lines and found specific chromosomal alterations common to these cell lines (a loss of heterozygosity in KMST and a deletion in SUSM) on the long arm of chromosome 7. In addition to these, we also found that introduction of chromosome 7 into these cell lines by means of microcell fusion resulted in the cessation of cell division, giving rise to cells resembling cells in senescence. Introduction of other chromosomes, such as chromosomes 1 and 11, on which losses of heterozygosity were also detected in one of the cell lines (KMST), to either KMST or SUSM cells or of chromosome 7 to several tumor-derived cell lines had no effect on their division potential. These results strongly suggest that a gene(s) affecting limited-division potential or senescence of normal human fibroblasts is located on chromosome 7, probably at the long arm of the chromosome, representing the first case in which a specific chromosome reverses the immortal phenotype of otherwise normal human cell lines.


Author(s):  
Mercy Merlin ◽  
Pranav Kumar Prabhakar ◽  
Dhananjay Shukla ◽  
Atul Kumar Tiwari ◽  
Saurabh Saxena

2020 ◽  
Vol 10 ◽  
Author(s):  
Bene A. Ekine-Afolabi ◽  
Anoka A. Njan ◽  
Solomon O. Rotimi ◽  
Anu R. I. ◽  
Attia M. Elbehi ◽  
...  

Cancer is the major cause of morbidity and mortality in the world today. The third most common cancer and which is most diet related is colorectal cancer (CRC). Although there is complexity and limited understanding in the link between diet and CRC, the advancement in research methods have demonstrated the involvement of non-coding RNAs (ncRNAs) as key regulators of gene expression. MicroRNAs (miRNAs) which are a class of ncRNAs are key players in cancer related pathways in the context of dietary modulation. The involvement of ncRNA in cancer progression has recently been clarified throughout the last decade. ncRNAs are involved in biological processes relating to tumor onset and progression. The advances in research have given insights into cell to cell communication, by highlighting the pivotal involvement of extracellular vesicle (EV) associated-ncRNAs in tumorigenesis. The abundance and stability of EV associated ncRNAs act as a new diagnostic and therapeutic target for cancer. The understanding of the deranging of these molecules in cancer can give access to modulating the expression of the ncRNAs, thereby influencing the cancer phenotype. Food derived exosomes/vesicles (FDE) are gaining interest in the implication of exosomes in cell-cell communication with little or no understanding to date on the role FDE plays. There are resident microbiota in the colon; to which the imbalance in the normal intestinal occurrence leads to chronic inflammation and the production of carcinogenic metabolites that lead to neoplasm. Limited studies have shown the implication of various types of microbiome in CRC incidence, without particular emphasis on fungi and protozoa. This review discusses important dietary factors in relation to the expression of EV-associated ncRNAs in CRC, the impact of diet on the colon ecosystem with particular emphasis on molecular mechanisms of interactions in the ecosystem, the influence of homeostasis regulators such as glutathione, and its conjugating enzyme-glutathione S-transferase (GST) polymorphism on intestinal ecosystem, oxidative stress response, and its relationship to DNA adduct fighting enzyme-0-6-methylguanine-DNA methyltransferase. The understanding of the molecular mechanisms and interaction in the intestinal ecosystem will inform on the diagnostic, preventive and prognosis as well as treatment of CRC.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii4-iii4
Author(s):  
A Bruning-Richardson ◽  
H Sanganee ◽  
S Barry ◽  
D Tams ◽  
T Brend ◽  
...  

Abstract BACKGROUND Targeting kinases as regulators of cellular processes that drive cancer progression is a promising approach to improve patient outcome in GBM management. The glycogen synthase kinase 3 (GSK-3) plays a role in cancer progression and is known for its pro-proliferative activity in gliomas. The anti-proliferative and cytotoxic effects of the GSK-3 inhibitor AZD2858 were assessed in relevant in vitro and in vivo glioma models to confirm GSK-3 as a suitable target for improved single agent or combination treatments. MATERIAL AND METHODS The immortalised cell line U251 and the patient derived cell lines GBM1 and GBM4 were used in in vitro studies including MTT, clonogenic survival, live cell imaging, immunofluorescence microscopy and flow cytometry to assess the cytotoxic and anti-proliferative effects of AZD2858. Observed anti-proliferative effects were investigated by microarray technology for the identification of target genes with known roles in cell proliferation. Clinical relevance of targeting GSK-3 with the inhibitor either for single agent or combination treatment strategies was determined by subcutaneous and orthotopic in vivo modelling. Whole mount mass spectroscopy was used to confirm drug penetration in orthotopic tumour models. RESULTS AZD2858 was cytotoxic at low micromolar concentrations and at sub-micromolar concentrations (0.01 - 1.0 μM) induced mitotic defects in all cell lines examined. Prolonged mitosis, centrosome disruption/duplication and cytokinetic failure leading to cell death featured prominently among the cell lines concomitant with an observed S-phase arrest. No cytotoxic or anti-proliferative effect was observed in normal human astrocytes. Analysis of the RNA microarray screen of AZD2858 treated glioma cells revealed the dysregulation of mitosis-associated genes including ASPM and PRC1, encoding proteins with known roles in cytokinesis. The anti-proliferative and cytotoxic effect of AZD2858 was also confirmed in both subcutaneous and orthotopic in vivo models. In addition, combination treatment with AZD2858 enhanced clinically relevant radiation doses leading to reduced tumour volume and improved survival in orthotopic in vivo models. CONCLUSION GSK-3 inhibition with the small molecule inhibitor AZD2858 led to cell death in glioma stem cells preventing normal centrosome function and promoting mitotic failure. Normal human astrocytes were not affected by treatment with the inhibitor at submicromolar concentrations. Drug penetration was observed alongside an enhanced effect of clinical radiotherapy doses in vivo. The reported aberrant centrosomal duplication may be a direct consequence of failed cytokinesis suggesting a role of GSK-3 in regulation of mitosis in glioma. GSK-3 is a promising target for combination treatment with radiation in GBM management and plays a role in mitosis-associated events in glioma biology.


Molecules ◽  
2019 ◽  
Vol 24 (23) ◽  
pp. 4388 ◽  
Author(s):  
Morak-Młodawska ◽  
Pluta ◽  
Latocha ◽  
Jeleń ◽  
Kuśmierz

A series of novel 1,2,3-triazole-diazphenothiazine hybrids was designed, synthesized, and evaluated for anticancer activity against four selected human tumor cell lines (SNB-19, Caco-2, A549, and MDA-MB231). The majority of the synthesized compounds exhibited significant potent activity against the investigated cell lines. Among them, compounds 1d and 4c showed excellent broad spectrum anticancer activity, with IC50 values ranging from 0.25 to 4.66 μM and 0.25 to 6.25 μM, respectively. The most promising compound 1d, possessing low cytotoxicity against normal human fibroblasts NHFF, was used for gene expression analysis using reverse transcription–quantitative real-time PCR (RT–qPCR). The expression of H3, TP53, CDKN1A, BCL-2, and BAX genes revealed that these compounds inhibited the proliferation in all cells (H3) and activated mitochondrial events of apoptosis (BAX/BCL-2).


Author(s):  
Ádám Oszvald ◽  
Zsuzsanna Szvicsek ◽  
Márton Pápai ◽  
Andrea Kelemen ◽  
Zoltán Varga ◽  
...  

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 735 ◽  
Author(s):  
Kwang Seock Kim ◽  
Dongjun Jeong ◽  
Ita Novita Sari ◽  
Yoseph Toni Wijaya ◽  
Nayoung Jun ◽  
...  

Our current understanding of the role of microRNA 551b (miR551b) in the progression of colorectal cancer (CRC) remains limited. Here, studies using both ectopic expression of miR551b and miR551b mimics revealed that miR551b exerts a tumor suppressive effect in CRC cells. Specifically, miR551b was significantly downregulated in both patient-derived CRC tissues and CRC cell lines compared to normal tissues and non-cancer cell lines. Also, miR551b significantly inhibited the motility of CRC cells in vitro, including migration, invasion, and wound healing rates, but did not affect cell proliferation. Mechanistically, miR551b targets and inhibits the expression of ZEB1 (Zinc finger E-box-binding homeobox 1), resulting in the dysregulation of EMT (epithelial-mesenchymal transition) signatures. More importantly, miR551b overexpression was found to reduce the tumor size in a xenograft model of CRC cells in vivo. Furthermore, bioinformatic analyses showed that miR551b expression levels were markedly downregulated in the advanced-stage CRC tissues compared to normal tissues, and ZEB1 was associated with the disease progression in CRC patients. Our findings indicated that miR551b could serve as a potential diagnostic biomarker and could be utilized to improve the therapeutic outcomes of CRC patients.


Sign in / Sign up

Export Citation Format

Share Document