scholarly journals Systematic Construction and Validation of a Prognostic Model for Hepatocellular Carcinoma Based on Immune-Related Genes

Author(s):  
Jiahao Yu ◽  
Shuoyi Ma ◽  
Siyuan Tian ◽  
Miao Zhang ◽  
Xiaopeng Ding ◽  
...  

Hepatocellular carcinoma (HCC), a highly aggressive tumor, has high incidence and mortality rates. Recently, immunotherapies have been shown to be a promising treatment in HCC. The results of either the CheckMate-040 or IMbrave 150 trials demonstrate the importance of immunotherapy in the systemic treatment of liver cancer. Thus, in this study, we tried to establish a reliable prognostic model for liver cancer based on immune-related genes (IRGs) and to provide a new insight for immunotherapy of HCC. In this study, we used four datasets that incorporated 851 HCC samples, including 340 samples with complete clinical information from the cancer genome atlas (TCGA) database, to establish an effective model for predicting the prognosis of HCC patients based on the differential expression of IRGs and validated the prognostic model using the data from International Cancer Genome Consortium (ICGC). The top 6 characteristic IRGs identified by protein-protein interaction (PPI) network analysis, MMP9, FOS, CAT, ESR1, ANGPTL3, and KLKB1, were selected for further study. In addition, we assessed the correlations of the six characteristic IRGs with the tumor immune microenvironment, clinical stage, and sensitivity to anti-cancer drugs. We also explored whether the differential expression of the characteristic IRGs was specific to HCC or present in pan-cancer. The expression levels of the six characteristic IRGs were significantly different between most tumor tissues and adjacent normal tissues. In addition, these characteristic IRGs showed a strong association with immune cell infiltration in HCC patients. We found that MMP9 and ESR1 were independent prognostic factors for HCC, while CAT, ESR1, and KLKB1 were associated with the clinical stage. We collected HCC paraffin sections from 24 patients from Xijing hospital to identify the differential expression of the five genes (MMP9, ESR1, CAT, FOS, and KLKB1). Finally, the results of decision curve analysis (DCA) and nomogram revealed that our models provided a prognostic benefit for most HCC patients and the predicted overall survival (OS) was consistent with the actual OS. In conclusion, we systemically constructed a novel prognostic model that provides new insights into HCC.

2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuomao Mo ◽  
Daiyuan Liu ◽  
Dade Rong ◽  
Shijun Zhang

Background: Generally, hepatocellular carcinoma (HCC) exists in an immunosuppressive microenvironment that promotes tumor evasion. Hypoxia can impact intercellular crosstalk in the tumor microenvironment. This study aimed to explore and elucidate the underlying relationship between hypoxia and immunotherapy in patients with HCC.Methods: HCC genomic and clinicopathological datasets were obtained from The Cancer Genome Atlas (TCGA-LIHC), Gene Expression Omnibus databases (GSE14520) and International Cancer Genome Consortium (ICGC-LIRI). The TCGA-LIHC cases were divided into clusters based on single sample gene set enrichment analysis and hierarchical clustering. After identifying patients with immunosuppressive microenvironment with different hypoxic conditions, correlations between immunological characteristics and hypoxia clusters were investigated. Subsequently, a hypoxia-associated score was established by differential expression, univariable Cox regression, and lasso regression analyses. The score was verified by survival and receiver operating characteristic curve analyses. The GSE14520 cohort was used to validate the findings of immune cell infiltration and immune checkpoints expression, while the ICGC-LIRI cohort was employed to verify the hypoxia-associated score.Results: We identified hypoxic patients with immunosuppressive HCC. This cluster exhibited higher immune cell infiltration and immune checkpoint expression in the TCGA cohort, while similar significant differences were observed in the GEO cohort. The hypoxia-associated score was composed of five genes (ephrin A3, dihydropyrimidinase like 4, solute carrier family 2 member 5, stanniocalcin 2, and lysyl oxidase). In both two cohorts, survival analysis revealed significant differences between the high-risk and low-risk groups. In addition, compared to other clinical parameters, the established score had the highest predictive performance at both 3 and 5 years in two cohorts.Conclusion: This study provides further evidence of the link between hypoxic signals in patients and immunosuppression in HCC. Defining hypoxia-associated HCC subtypes may help reveal potential regulatory mechanisms between hypoxia and the immunosuppressive microenvironment, and our hypoxia-associated score could exhibit potential implications for future predictive models.


2020 ◽  
Author(s):  
Yifei Dai ◽  
Weijie Qiang ◽  
Kequan Lin ◽  
Yu Gui ◽  
Xun Lan ◽  
...  

Abstract Background: Hepatocellular carcinoma (HCC) ranks the fourth in terms of cancer-related mortality globally. Herein, in this research, we attempted to develop a novel immune-related gene signature that could predict survival and efficacy of immunotherapy for HCC patients.Methods: The transcriptomic and clinical data of HCC samples were downloaded from The Cancer Genome Atlas (TCGA) and GSE14520 datasets, followed by acquisition of immune-related genes from the ImmPort database. Afterwards, an immune-related gene-based prognostic index (IRGPI) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression model. Kaplan-Meier survival curves as well as time-dependent receiver operating characteristic (ROC) curve were performed to evaluate its predictive capability. Besides, both univariate and multivariate analysis on overall survival for the IRGPI and multiple clinicopathologic factors were carried out, followed by the construction of nomogram. Finally, we explored the possible correlation of IRGPI with immune cell infiltration or immunotherapy efficacy. Results: Analysis of 365 HCC samples identified 11 differentially expressed genes, which were selected to establish the IRGPI. Notably, it can predict survival of HCC patients more accurately than published biomarkers. Furthermore, IRGPI can predict the infiltration of immune cells in the tumor microenvironment of HCC, as well as the response of immunotherapy.Conclusion: Collectively, the currently established IRGPI can accurately predict survival, reflect the immune microenvironment, and predict the efficacy of immunotherapy among HCC patients.


2020 ◽  
Author(s):  
Baohui Zhang ◽  
Bufu Tang ◽  
Jianyao Gao ◽  
Jiatong Li ◽  
Lingming Kong ◽  
...  

Abstract Background Hypoxia plays an indispensable role in the development of hepatocellular carcinoma (HCC). However, there are few studies on the application of hypoxia molecules in the prognosis predicting of HCC. We aimed to identify the hypoxia-related genes in HCC and construct reliable models for diagnosis, prognosis and recurrence of HCC patients as well as exploring the potential mechanism.Methods Differentially expressed genes (DEGs) analysis was performed using The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database and four clusters were determined by a consistent clustering analysis. Three DEGs closely related to overall survival(OS)were identified using Cox regression and LASSO analysis and the hypoxia-related signature was developed and validated in TCGA and International Cancer Genome Consortium (ICGC) database. Then the Gene Set Enrichment Analysis (GSEA) was performed to explore signaling pathways regulated by the signature and the CIBERSORT was used for estimating the fractions of immune cell types.Results A total of 397 hypoxia-related DEGs were detected and three genes (PDSS1, CDCA8 and SLC7A11) were selected to construct a prognosis, recurrence and diagnosis model. Then patients were divided into high- and low-risk groups. Our hypoxia-related signature was significantly associated with worse prognosis and higher recurrence rate. The diagnostic model also accurately distinguished HCC from normal samples and nodules. Furthermore, the hypoxia-related signature could positively regulate immune response and the high-risk group had higher fractions of macrophages, B memory cells and follicle-helper T cells, and exhibited higher expression of immunocheckpoints such as PD1and PDL1.Conclusions Altogether, our study showed that hypoxia-related signature is a potential biomarker for diagnosis, prognosis and recurrence of HCC, and it provided an immunological perspective for developing personalized therapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yingxi Du ◽  
Yarui Ma ◽  
Qing Zhu ◽  
Tongzheng Liu ◽  
Yuchen Jiao ◽  
...  

Background: N6-methyladenosine (m6A) is related to the progression of multiple cancers. However, the underlying influences of m6A-associated genes on the tumor immune microenvironment in hepatocellular carcinoma (HCC) remain poorly understood. Therefore, we sought to construct a survival prediction model using m6A-associated genes to clarify the molecular and immune characteristics of HCC.Methods: HCC case data were downloaded from The Cancer Genome Atlas (TCGA). Then, by applying consensus clustering, we identified two distinct HCC clusters. Next, four m6A-related genes were identified to construct a prognostic model, which we validated with Gene Expression Omnibus (GEO) and International Cancer Genome Consortium (ICGC) datasets. Additionally, the molecular and immune characteristics in different subgroups were analyzed.Results: m6A RNA methylation regulators were differentially expressed between HCC and normal samples and linked with immune checkpoint expression. Using consensus clustering, we divided HCC samples into two subtypes with distinct clinical features. Cluster 2 was associated with unfavorable prognosis, higher immune checkpoint expression and immune cell infiltration levels. In addition, the immune and carcinogenic signaling pathways were enriched in cluster 2. Furthermore, we constructed a risk model using four m6A-associated genes. Patients with different risk scores had distinct survival times, expression levels of immunotherapy biomarkers, TP53 mutation rates, and sensitivities to chemotherapy and targeted therapy. Similarly, the model exhibited an identical impact on overall survival in the validation cohorts.Conclusion: The constructed m6A-based signature may be promising as a biomarker for prognostics and to distinguish immune characteristics in HCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shiyan Yang ◽  
Yajun Cheng ◽  
Xiaolong Wang ◽  
Ping Wei ◽  
Hui Wang ◽  
...  

Background: Globally, hepatocellular carcinoma (HCC) is the sixth most frequent malignancy with a high incidence and a poor prognosis. Immune cell infiltration (ICI) underlies both the carcinogenesis and immunogenicity of tumors. However, a comprehensive classification system based on the immune features for HCC remains unknown.Methods: The HCC dataset from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) cohorts was used in this study. The ICI patterns of 571 patients were characterized using two algorithms: the patterns were determined based on the ICI using the ConsensusClusterPlus package, and principal component analysis (PCA) established the ICI scores. Differences in the immune landscape, biological function, and somatic mutations across ICI scores were evaluated and compared, followed by a predictive efficacy evaluation of ICI scores for immunotherapy by the two algorithms and validation using an external immunotherapy cohort.Results: Based on the ICI profile of the HCC patients, three ICI patterns were identified, including three subtypes having different immunological features. Individual ICI scores were determined; the high ICI score subtype was characterized by enhanced activation of immune-related signaling pathways and a significantly high tumor mutation burden (TMB); concomitantly, diminished immunocompetence and enrichment of pathways associated with cell cycle and RNA degradation were found in the low ICI score subtype. Taken together, our results contribute to a better understanding of an active tumor and plausible reasons for its poor prognosis.Conclusion: The present study reveals that ICI scores may serve as valid prognostic biomarkers for immunotherapy in HCC.


2021 ◽  
Author(s):  
Junfan Pan ◽  
Zhidong Huang ◽  
Yiquan Xu

Abstract Background: Lung cancer is the most common cause of cancer-related death worldwide. In humans, 22 functional α-disintegrinand metalloproteinases (ADAMs) have been identified, 12 of which have proteolytic activity. The role of ADAMs in cancer has attracted increasing attention. However, the expression and significance of ADAMs in lung adenocarcinoma (LUAD) remain unclear. The current study aimed to explore the expression and prognostic value of ADAM12 in LUAD.Methods: The Cancer Genome Atlas(TCGA) database was used to analyse the expression of ADAMs in LUAD. The cBioPortal database was used to obtain and analyse ADAM12 copy number changes, and the LinkedOmics database was utilised for the analysis of ADAM12-related genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was then performed using TIMER. The relationship between ADAM12 and the tumour immune microenvironment(TIM) was assessed via the TISIDB database. ADAM12 and immune-related genes were used to construct a prognostic model. Knockdown of ADAM12 was performed in vitro in order to verify its biological function. The unpaired t-test was used for comparison between the two groups, ANOVA was used for analysing differences between multiple groups, and the Kaplan-Meier test was used to compare survival between groups.Results: Most ADAMs exhibited significant differential expression in LUAD. ADAM12 expression was significantly higher in LUAD tissues than in healthy tissues, and lower ADAM12 expression was associated with better survival. Genetic alterations of ADAM12 mainly included missense mutations, amplifications, and deep deletions. ADAM12 and positively correlated genes were mainly enriched in protein digestion and absorption, ECM-receptor interaction, and adhesion plaques. ADAM12 had a moderate correlation with immune cell markers EBIP1, CCNB1, EXO1, KNTC1, PRC1 and FAM198B. Prognostic model was established based on ADAM12 and immune-related genes. In vitro experiments revealed that knocking down ADAM12 inhibited cell proliferation, migration and invasion.Conclusion: ADAM12 potentially plays an important role in the occurrence of LUAD and may be utilised as an immunotherapy target and a valuable prognostic biomarker for LUAD.


2021 ◽  
Author(s):  
Lianmei Wang ◽  
Jing Liu ◽  
Zhong Xian ◽  
Jingzhuo Tian ◽  
Chunying Li ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is associated with poor 5-year survival. Chronic infection with hepatitis B virus (HBV) contributes to ~ 50% of HCC cases. Establishment of a prognostic model is pivotal for clinical therapy of HBV-related HCC (HBV–HCC). We downloaded gene-expression profiles from Gene expression omnibus (GEO) datasets with HBV-HCC patients and the corresponding controls. Integration of these differentially expressed genes (DEGs) was achieved with the Robustrankaggreg (RRA) method. DEGs functional analyses and pathway analyses was performed using the Gene ontology (GO) database, and the Kyoto encyclopedia of genes and genomes (KEGG) database respectively. DNA topoisomerase II alpha (TOP2A), Disks large-associated protein 5 (DLGAP5), RAD51 associated protein 1 (RAD51AP1), ZW10 interactor (ZWINT), BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B), Cyclin B1 (CCNB1), Forkhead box M1 (FOXM1), Cyclin B2 (CCNB2), Aurora kinase A (AURKA), and Cyclin-dependent kinase 1 (CDK1) were identified as the top-ten hub genes. These hub-genes were verified by the Liver cancer-riken, JP project from international cancer genome consortium (ICGC-LIRI-JP) project, The Cancer genome atlas (TCGA) HCC cohort, and Human protein profiles dataset. FOXM1 and CDK1 were found to be prognostic-related molecules for HBV-HCC patients. The expression patterns of FOXM1 and CDK1were consistently in human and mouse. Furthermore, a nomogram model based on histology grade, pathology stage, sex and, expression of FOXM1 and CDK1 was built to predict the prognosis for HBV–HCC patients. The nomogram model could be used to predict the prognosis of HBV-HCC cases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linfeng Xu ◽  
Xingxing Jian ◽  
Zhenhao Liu ◽  
Jingjing Zhao ◽  
Siwen Zhang ◽  
...  

Background: Hepatocellular carcinoma (HCC) is the most common primary liver malignancy with high morbidity and mortality worldwide. Tumor immune microenvironment (TIME) plays a pivotal role in the outcome and treatment of HCC. However, the effect of immune cell signatures (ICSs) representing the characteristics of TIME on the prognosis and therapeutic benefit of HCC patients remains to be further studied.Materials and methods: In total, the gene expression profiles of 1,447 HCC patients from several databases, i.e., The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium, and Gene Expression Omnibus, were obtained and applied. Based on a comprehensive collection of marker genes, 182 ICSs were evaluated by single sample gene set enrichment analysis. Then, by performing univariate and multivariate Cox analysis and random forest modeling, four significant signatures were selected to fit an immune cell signature score (ICSscore).Results: In this study, an ICSscore-based prognostic model was constructed to stratify HCC patients into high-risk and low-risk groups in the TCGA-LIHC cohort, which was successfully validated in two independent cohorts. Moreover, the ICSscore values were found to positively correlate with the current American Joint Committee on Cancer staging system, indicating that ICSscore could act as a comparable biomarker for HCC risk stratification. In addition, when setting the four ICSs and ICSscores as features, the classifiers can significantly distinguish treatment-responding and non-responding samples in HCC. Also, in melanoma and breast cancer, the unified ICSscore could verify samples with therapeutic benefits.Conclusion: Overall, we simplified the tedious ICS to develop the ICSscore, which can be applied successfully for prognostic stratification and therapeutic evaluation in HCC. This study provides an insight into the therapeutic predictive efficacy of prognostic ICS, and a novel ICSscore was constructed to allow future expanded application.


2020 ◽  
Vol 14 (14) ◽  
pp. 1353-1369
Author(s):  
Yan-Dong Miao ◽  
Jiang-Tao Wang ◽  
Yuan Yang ◽  
Xue-Ping Ma ◽  
Deng-Hai Mi

Aim: To identify prognosis-related immune genes (PRIGs) and construct a prognosis model of colorectal cancer (CRC) patients for clinical use. Materials & methods: Expression profiles were obtained from The Cancer Genome Atlas database and identified differentially expressed PRIGs of CRC. Results: A prognostic model was conducted based on nine PRIGs. The risk score, based on prognosis model, was an independent prognostic predictor. Five PRIGs and risk score were significantly associated with the clinical stage of CRC and five immune cells related to the risk score. Conclusion: The risk score was an independent prognostic biomarker for CRC patients. The research excavated immune genes that were associated with survival and that could be potential biomarkers for prognosis and treatment for CRC patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qiuxian Zheng ◽  
Qin Yang ◽  
Jiaming Zhou ◽  
Xinyu Gu ◽  
Haibo Zhou ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) has a poor prognosis and has become the sixth most common malignancy worldwide due to its high incidence. Advanced approaches to therapy, including immunotherapeutic strategies, have played crucial roles in decreasing recurrence rates and improving clinical outcomes. The HCC microenvironment is important for both tumour carcinogenesis and immunogenicity, but a classification system based on immune signatures has not yet been comprehensively described. Methods HCC datasets from The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and the International Cancer Genome Consortium (ICGC) were used in this study. Gene set enrichment analysis (GSEA) and the ConsensusClusterPlus algorithm were used for clustering assessments. We scored immune cell infiltration and used linear discriminant analysis (LDA) to improve HCC classification accuracy. Pearson's correlation analyses were performed to assess relationships between immune signature indices and immunotherapies. In addition, weighted gene co-expression network analysis (WGCNA) was applied to identify candidate modules closely associated with immune signature indices. Results Based on 152 immune signatures from HCC samples, we identified four distinct immune subtypes (IS1, IS2, IS3, and IS4). Subtypes IS1 and IS4 had more favourable prognoses than subtypes IS2 and IS3. These four subtypes also had different immune system characteristics. The IS1 subtype had the highest scores for IFNγ, cytolysis, angiogenesis, and immune cell infiltration among all subtypes. We also identified 11 potential genes, namely, TSPAN15, TSPO, METTL9, CD276, TP53I11, SPINT1, TSPO, TRABD2B, WARS2, C9ORF116, and LBH, that may represent potential immunological biomarkers for HCC. Furthermore, real-time PCR revealed that SPINT1, CD276, TSPO, TSPAN15, METTL9, and WARS2 expression was increased in HCC cells. Conclusions The present gene-based immune signature classification and indexing may provide novel perspectives for both HCC immunotherapy management and prognosis prediction.


Sign in / Sign up

Export Citation Format

Share Document