scholarly journals Tumor-Derived Extracellular Vesicles: A Means of Co-opting Macrophage Polarization in the Tumor Microenvironment

Author(s):  
Theodore Reed ◽  
Jeffrey Schorey ◽  
Crislyn D’Souza-Schorey

Extracellular vesicles (EVs) are a heterogeneous population of membrane-bound parcels of bioactive proteins, nucleic acids, and lipids released from almost all cell types. The diversity of cargo packaged into EVs proffer the induction of an array of effects on recipient cells. EVs released from tumor cells have emerged as a vital means of communication and immune modulation within the tumor microenvironment (TME). Macrophages are an important contributor to the TME with seemingly paradoxical roles promoting either pro- or anti-tumoral immune function depending on their activated phenotypes. Here, we discuss the influence of tumor-derived extracellular vesicles on the functional plasticity of macrophages in tumor progression.

2021 ◽  
Vol 22 (12) ◽  
pp. 6507
Author(s):  
Giulia Cricrì ◽  
Linda Bellucci ◽  
Giovanni Montini ◽  
Federica Collino

Intercellular communication governs multicellular interactions in complex organisms. A variety of mechanisms exist through which cells can communicate, e.g., cell-cell contact, the release of paracrine/autocrine soluble molecules, or the transfer of extracellular vesicles (EVs). EVs are membrane-surrounded structures released by almost all cell types, acting both nearby and distant from their tissue/organ of origin. In the kidney, EVs are potent intercellular messengers released by all urinary system cells and are involved in cell crosstalk, contributing to physiology and pathogenesis. Moreover, urine is a reservoir of EVs coming from the circulation after crossing the glomerular filtration barrier—or originating in the kidney. Thus, urine represents an alternative source for biomarkers in kidney-related diseases, potentially replacing standard diagnostic techniques, including kidney biopsy. This review will present an overview of EV biogenesis and classification and the leading procedures for isolating EVs from body fluids. Furthermore, their role in intra-nephron communication and their use as a diagnostic tool for precision medicine in kidney-related disorders will be discussed.


2019 ◽  
Author(s):  
Benedikt Kirchner ◽  
Dominik Buschmann ◽  
Vijay Paul ◽  
Michael W. Pfaffl

Abstract Background Extracellular vesicles (EVs) such as exosomes are key regulators of intercellular communication that can be found in almost all bio fluids. Although studies in the last decade have made great headway in discerning the role of EVs in many physiological and pathophysiological processes, the bioavailability and impact of dietary EVs and their cargo still remain to be elucidated. Due to its widespread consumption and high content of EV-associated microRNAs and proteins, a major focus in this field has been set on EVs in bovine milk and colostrum. Despite promising in vitro studies in recent years that show high resiliency of milk EVs to degradation and uptake of milk EV cargo in a variety of intestinal and blood cell types, in vivo experiments continue to be inconclusive and sometimes outright contradictive. Results To resolve this discrepancy, we assessed the potential postprandial transfer of colostral EVs to the circulation of newborn calves by analysing colostrum-specific protein and miRNAs, including specific isoforms (isomiRs) in cells, EV isolations and unfractionated samples from blood and colostrum. Our findings reveal distinct populations of EVs in colostrum and blood from cows that can be clearly separated by density, particle concentration and protein content (BTN1A1, MFGE8). Postprandial blood samples of calves show a time-dependent increase in EVs that share morphological and protein characteristics of colostral EVs. Analysis of miRNA expression profiles by Next-Generation Sequencing gave a different picture however. Although significant postprandial expression changes could only be detected for calf EV samples, expression profiles show very limited overlap with highly expressed miRNAs in colostral EVs or colostrum in general. Conclusions Taken together our results indicate a selective uptake of membrane-associated protein cargo but not luminal miRNAs from colostral EVs into the circulation of neonatal calves.


Proteomes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 11 ◽  
Author(s):  
Rahul Sanwlani ◽  
Pamali Fonseka ◽  
Sai V. Chitti ◽  
Suresh Mathivanan

Milk is considered as more than a source of nutrition for infants and is a vector involved in the transfer of bioactive compounds and cells. Milk contains abundant quantities of extracellular vesicles (EVs) that may originate from multiple cellular sources. These nanosized vesicles have been well characterized and are known to carry a diverse cargo of proteins, nucleic acids, lipids and other biomolecules. Milk-derived EVs have been demonstrated to survive harsh and degrading conditions in gut, taken up by various cell types, cross biological barriers and reach peripheral tissues. The cargo carried by these dietary EVs has been suggested to have a role in cell growth, development, immune modulation and regulation. Hence, there is considerable interest in understanding the role of milk-derived EVs in mediating inter-organismal and cross-species communication. Furthermore, various attributes such as it being a natural source, as well as its abundance, scalability, economic viability and lack of unwarranted immunologic reactions, has generated significant interest in deploying milk-derived EVs for clinical applications such as drug delivery and disease therapy. In this review, the role of milk-derived EVs in inter-organismal, cross-species communication and in drug delivery is discussed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 261 ◽  
Author(s):  
Jiao Li ◽  
Elham Hosseini-Beheshti ◽  
Georges Grau ◽  
Hala Zreiqat ◽  
Christopher Little

Extracellular vesicles (EVs) are nanoscale particles secreted by almost all cell types to facilitate intercellular communication. Stem cell-derived EVs theoretically have the same biological functions as stem cells, but offer the advantages of small size, low immunogenicity, and removal of issues such as low cell survival and unpredictable long-term behaviour associated with direct cell transplantation. They have been an area of intense interest in regenerative medicine, due to the potential to harness their anti-inflammatory and pro-regenerative effects to induce healing in a wide variety of tissues. However, the potential of using stem cell-derived EVs for treating joint injury and osteoarthritis has not yet been extensively explored. The pathogenesis of osteoarthritis, with or without prior joint injury, is not well understood, and there is a longstanding unmet clinical need to develop new treatments that provide a therapeutic effect in preventing or stopping joint degeneration, rather than merely relieving the symptoms of the disease. This review summarises the current evidence relating to stem cell-derived EVs in joint injury and osteoarthritis, providing a concise discussion of their characteristics, advantages, therapeutic effects, limitations and outlook in this exciting new area.


2020 ◽  
Vol 18 (2) ◽  
pp. 91-114
Author(s):  
Vladimir I. Vashchenko ◽  
Petr D. Shabanov

Extracellular vesicles (EVs) represent heterogeneous population of the microparticles liberated by almost all live cages which are widely investigated recently in various biological and medical areas. They usually consist of two basic types (exosomes and microvesicles) and recently draw the increasing attention in quality mesenges of the cellular alarm system. Really, these vesicles can influence on cages-recipients, transferring and delivering difficult complexes of biomolecules (the lipids, proteins, coagulation factors, antigene, nucleinic acids), protected from enzymatic to degradation in environment. Importance EVs has been shown in pathophysiology several bodies, in particular, in kidneys where various types of cages нефрона allocate EVs which mediate their communication with underlaying cages urinogenous ways. By numerous researches it is established that EVs are involved in cellular communications during the regenerative and pathological processes occurring in a kidney. During the last years also it has been proved that vesicles play an important role in normal physiology of kidneys. Though many mechanisms EVs at illnesses are still studied insufficiently, in particular, in kidneys, opening of a role of additional mechanisms can help to throw light on the biological processes proceeding in kidneys. Eventually, extracellular vesicles, allocated with nephritic cages, collect in urine, becoming, thus, the big resource as markers of illnesses urinogenous a path and the perspective noninvasive diagnostic tool at nephritic illnesses. In the present review we discuss the latest data about a role EVs in pathophysiology of kidneys and their potential prospects in diagnostics and therapy of nephritic illness.


Cells ◽  
2018 ◽  
Vol 7 (8) ◽  
pp. 93 ◽  
Author(s):  
James Jabalee ◽  
Rebecca Towle ◽  
Cathie Garnis

Extracellular vesicles (EVs) are a heterogeneous collection of membrane-bound structures that play key roles in intercellular communication. EVs are potent regulators of tumorigenesis and function largely via the shuttling of cargo molecules (RNA, DNA, protein, etc.) among cancer cells and the cells of the tumor stroma. EV-based crosstalk can promote proliferation, shape the tumor microenvironment, enhance metastasis, and allow tumor cells to evade immune destruction. In many cases these functions have been linked to the presence of specific cargo molecules. Herein we will review various types of EV cargo molecule and their functional impacts in the context of oncology.


Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 778
Author(s):  
Carolina Amaral Bueno Azevedo ◽  
Regiane Stafim da Cunha ◽  
Carolina Victoria Cruz Junho ◽  
Jessica Verônica da Silva ◽  
Andréa N. Moreno-Amaral ◽  
...  

Cardiorenal syndrome (CRS) is described as primary dysfunction in the heart culminating in renal injury or vice versa. CRS can be classified into five groups, and uremic toxin (UT) accumulation is observed in all types of CRS. Protein-bound uremic toxin (PBUT) accumulation is responsible for permanent damage to the renal tissue, and mainly occurs in CRS types 3 and 4, thus compromising renal function directly leading to a reduction in the glomerular filtration rate (GFR) and/or subsequent proteinuria. With this decrease in GFR, patients may need renal replacement therapy (RRT), such as peritoneal dialysis (PD). PD is a high-quality and home-based dialysis therapy for patients with end-stage renal disease (ESRD) and is based on the semi-permeable characteristics of the peritoneum. These patients are exposed to factors which may cause several modifications on the peritoneal membrane. The presence of UT may harm the peritoneum membrane, which in turn can lead to the formation of extracellular vesicles (EVs). EVs are released by almost all cell types and contain lipids, nucleic acids, metabolites, membrane proteins, and cytosolic components from their cell origin. Our research group previously demonstrated that the EVs can be related to endothelial dysfunction and are formed when UTs are in contact with the endothelial monolayer. In this scenario, this review explores the mechanisms of EV formation in CRS, uremia, the peritoneum, and as potential biomarkers in peritoneal dialysis.


2021 ◽  
Vol 11 ◽  
Author(s):  
Kayla F. Goliwas ◽  
Hannah M. Ashraf ◽  
Anthony M. Wood ◽  
Yong Wang ◽  
Kenneth P. Hough ◽  
...  

Tumor-stromal interactions within the tumor microenvironment (TME) influence lung cancer progression and response to therapeutic interventions, yet traditional in vitro studies fail to replicate the complexity of these interactions. Herein, we developed three-dimensional (3D) lung tumor models that mimic the human TME and demonstrate tumor-stromal crosstalk mediated by extracellular vesicles (EVs). EVs released by tumor cells, independent of p53 status, and fibroblasts within the TME mediate immunomodulatory effects; specifically, monocyte/macrophage polarization to a tumor-promoting M2 phenotype within this 3D-TME. Additionally, immune checkpoint inhibition in a 3D model that included T cells showed an inhibition of tumor growth and reduced hypoxia within the TME. Thus, perfused 3D tumor models incorporating diverse cell types provide novel insights into EV-mediated tumor-immune interactions and immune-modulation for existing and emerging cancer therapies.


2021 ◽  
Author(s):  
Joao Vasco Ferreira ◽  
Ana da Rosa Soares ◽  
Jose S. Ramalho ◽  
Catarina Maximo Carvalho ◽  
Maria Helena Cardoso ◽  
...  

Exosomes are extracellular vesicles of endosomal origin released by virtually all cell types across metazoans. Exosomes are active vehicles of intercellular communication and can transfer lipids, RNAs and proteins between different cells, tissues or organs. However, the mechanisms that regulate the selective loading of cytosolic proteins into these vesicles are still largely unknow. Here we describe a mechanism whereby proteins containing a pentapeptide sequence, biochemically related to the KFERQ-motif, are loaded into a subpopulation of exosomes in a process that is dependent on the membrane protein LAMP2A. Moreover, this mechanism is independent of the ESCRT machinery components TSG101 and VPS4b and dependent on HSC70, CD63, Alix, Syntenin-1, Rab31 and ceramides. The transcription factor and master regulator of hypoxia HIF1A is loaded into exosomes by this mechanism to transport hypoxia signaling to normoxic cells. Additionally, by tagging fluorescent proteins with KFERQ-like sequences we were able to follow inter-organ transfer of exosomes in zebrafish larvae. Our findings identify LAMP2A as a key component in exosome biogenesis while opening new avenues for exosome engineering by allowing the loading of bioactive proteins by tagging them with KFERQ-like motifs.


2020 ◽  
Vol 21 (15) ◽  
pp. 5195 ◽  
Author(s):  
Magdalena Żmigrodzka ◽  
Olga Witkowska-Piłaszewicz ◽  
Anna Winnicka

Extracellular vesicles (EVs) are a diverse group of membrane-bound structures secreted in physiological and pathological conditions by prokaryotic and eukaryotic cells. Their role in cell-to-cell communications has been discussed for more than two decades. More attention is paid to assess the impact of EVs in cancer. Numerous papers showed EVs as tumorigenesis regulators, by transferring their cargo molecules (miRNA, DNA, protein, cytokines, receptors, etc.) among cancer cells and cells in the tumor microenvironment. During platelet activation or apoptosis, platelet extracellular vesicles (PEVs) are formed. PEVs present a highly heterogeneous EVs population and are the most abundant EVs group in the circulatory system. The reason for the PEVs heterogeneity are their maternal activators, which is reflected on PEVs size and cargo. As PLTs role in cancer development is well-known, and PEVs are the most numerous EVs in blood, their feasible impact on cancer growth is strongly discussed. PEVs crosstalk could promote proliferation, change tumor microenvironment, favor metastasis formation. In many cases these functions were linked to the transfer into recipient cells specific cargo molecules from PEVs. The article reviews the PEVs biogenesis, cargo molecules, and their impact on the cancer progression.


Sign in / Sign up

Export Citation Format

Share Document