scholarly journals Enteric Phageome Alterations in Patients With Type 2 Diabetes

Author(s):  
Qian Chen ◽  
Xiaojing Ma ◽  
Chong Li ◽  
Yun Shen ◽  
Wei Zhu ◽  
...  

Type 2 diabetes is a complex metabolic disease and has been shown to involve alteration of the gut microbiota. Previous studies have primarily focused on changes in the bacterial microbiome, while ignoring the phage community composition. Extracellular phages can lyse host bacteria and thus influence the microbiota through positive or negative interactions with bacteria. We investigated changes in the extracellular phageome and discussed its role in T2D pathogenesis. We used a sequencing-based approach to identify bacteriophage after isolation of VLPs (virus like particles) from fecal samples. We identified 330 species of phages according to the predicted host bacteria from T2D patients (N=17) and nondiabetic controls (N=29). The phageome characteristics were highly diverse among individuals. In the T2D group, the intestinal phage population was altered, and the abundance of phages specific to Enterobacteriaceae hosts increased markedly. Meanwhile, the abundance of Enterobacteriaceae in the gut was significantly increased, and systemic LPS content elevation was observed in the T2D group. Additionally, a consortia of eight phages was found to distinguish T2D patients from nondiabetic controls with good performance (AUC>0.99).

2019 ◽  
Author(s):  
Qian Chen ◽  
Xiaojing Ma ◽  
Chong Li ◽  
Yun Shen ◽  
Wei Zhu ◽  
...  

Abstract Background Type 2 diabetes (T2D) is a complex metabolic disease and has been proved to involve in the alternation of the gut microbiota. The previous studies primarily focused on the changes in bacteriome while ignoring the phage community composition. The extracellular phages could lyse the host bacteria, and thus influence the microbiota through the positive or negative interactions with bacteria. We investigated the change of extracellular phageome and explored its role in T2D pathogenesis.Results We used a sequencing-based approach to identify the bacteriophage after isolation of VLPs from the fecal samples. We identified 330 phages according to the predicted host bacteria. The phageome characteristics were highly diverse among individuals. In the T2D group, the intestinal phage population is altered and the abundance of 7 identified phages specific to Enterobacteriaceae hosts were found increased markedly. Additionally, the abundance of Enterobacteriaceae bacteria in gut was significantly increased and the systemic LPS elevation was observed in T2D group. Several phage consortia were found to have significant correlations with T2D disease indicators.Conclusions The alteration of bacteriophages predicted to infect Enterobacteriaceae in the gut was observed in this study, which was expected to be a new source of systemic LPS in T2D patients, and may contribute to the pathogenesis of the disease. The data present in this study revealed the similar variation trend in enteric bacteriome and the correlated bacteriophages, which is likely to shed considerable light on overall understanding the interactions between microbiome and metabolic diseases.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2131
Author(s):  
Shujuan Zheng ◽  
Yanan Wang ◽  
Jingjing Fang ◽  
Ruixuan Geng ◽  
Mengjie Li ◽  
...  

Previous studies have reported the therapeutic effects of oleuropein (OP) consumption on the early stage of type 2 diabetes. However, the efficacy of OP on the advanced stage of type 2 diabetes has not been investigated, and the relationship between OP and intestinal flora has not been studied. Therefore, in this study, to explore the relieving effects of OP intake on the advanced stage of type 2 diabetes and the regulatory effects of OP on intestinal microbes, diabetic db/db mice (17-week-old) were treated with OP at the dose of 200 mg/kg for 15 weeks. We found that OP has a significant effect in decreasing fasting blood glucose levels, improving glucose tolerance, lowering the homeostasis model assessment–insulin resistance index, restoring histopathological features of tissues, and promoting hepatic protein kinase B activation in db/db mice. Notably, OP modulates gut microbiota at phylum level, increases the relative abundance of Verrucomicrobia and Deferribacteres, and decreases the relative abundance of Bacteroidetes. OP treatment increases the relative abundance of Akkermansia, as well as decreases the relative abundance of Prevotella, Odoribacter, Ruminococcus, and Parabacteroides at genus level. In conclusion, OP may ameliorate the advanced stage of type 2 diabetes through modulating the composition and function of gut microbiota. Our findings provide a promising therapeutic approach for the treatment of advanced stage type 2 diabetes.


Author(s):  
Dominic Salamone ◽  
Angela Albarosa Rivellese ◽  
Claudia Vetrani

AbstractGut microbiota and its metabolites have been shown to influence multiple physiological mechanisms related to human health. Among microbial metabolites, short-chain fatty acids (SCFA) are modulators of different metabolic pathways. On the other hand, several studies suggested that diet might influence gut microbiota composition and activity thus modulating the risk of metabolic disease, i.e. obesity, insulin resistance and type 2 diabetes. Among dietary component, dietary fibre may play a pivotal role by virtue of its prebiotic effect on fibre-fermenting bacteria, that may increase SCFA production. The aim of this review was to summarize and discuss current knowledge on the impact of dietary fibre as modulator of the relationship between glucose metabolism and microbiota composition in humans. More specifically, we analysed evidence from observational studies and randomized nutritional intervention investigating the relationship between gut microbiota, short-chain fatty acids and glucose metabolism. The possible mechanisms behind this association were also discussed.


Gut Pathogens ◽  
2021 ◽  
Vol 13 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractA strong and expanding evidence base supports the influence of gut microbiota in human metabolism. Altered glucose homeostasis is associated with altered gut microbiota, and is clearly associated with the development of type 2 diabetes mellitus (T2DM) and associated complications. Understanding the causal association between gut microbiota and metabolic risk has the potential role of identifying susceptible individuals to allow early targeted intervention.


2021 ◽  
Author(s):  
Rocío Mateo-Gallego ◽  
Isabel Moreno-Indias ◽  
Ana M. Bea ◽  
Lidia Sánchez-Alcoholado ◽  
Antonio J. Fumanal ◽  
...  

An alcohol-free beer including the substitution of regular carbohydrates for low doses of isomaltulose and maltodextrin within meals significantly impacts gut microbiota in diabetic subjects with overweight or obesity.


2019 ◽  
Vol 10 (5) ◽  
pp. 2935-2946 ◽  
Author(s):  
Rongkang Hu ◽  
Feng Zeng ◽  
Linxiu Wu ◽  
Xuzhi Wan ◽  
Yongfang Chen ◽  
...  

Carrot juice fermented with Lactobacillus rhamnosus GG, enriched with free phenolics, organic acids and short-chain fatty acid, has the potential to ameliorate type 2 diabetes, in part through modulating specific gut microbiota and regulating the mRNA and protein expressions levels involved in glucose metabolism.


2018 ◽  
Vol 39 (5) ◽  
pp. 719-738 ◽  
Author(s):  
Megan E Capozzi ◽  
Richard D DiMarchi ◽  
Matthias H Tschöp ◽  
Brian Finan ◽  
Jonathan E Campbell

Abstract Glucagonlike peptide 1 (GLP-1) receptor agonists have been efficacious for the treatment of type 2 diabetes due to their ability to reduce weight and attenuate hyperglycemia. However, the activity of glucagonlike peptide 1 receptor–directed strategies is submaximal, and the only potent, sustainable treatment of metabolic dysfunction is bariatric surgery, necessitating the development of unique therapeutics. GLP-1 is structurally related to glucagon and glucose-dependent insulinotropic peptide (GIP), allowing for the development of intermixed, unimolecular peptides with activity at each of their respective receptors. In this review, we discuss the range of tissue targets and added benefits afforded by the inclusion of each of GIP and glucagon. We discuss considerations for the development of sequence-intermixed dual agonists and triagonists, highlighting the importance of evaluating balanced signaling at the targeted receptors. Several multireceptor agonist peptides have been developed and evaluated, and the key preclinical and clinical findings are reviewed in detail. The biological activity of these multireceptor agonists are founded in the success of GLP-1-directed strategies; by including GIP and glucagon components, these multireceptor agonists are thought to enhance GLP-1’s activities by broadening the tissue targets and synergizing at tissues that express multiple receptors, such at the brain and pancreatic isletβ cells. The development and utility of balanced, unimolecular multireceptor agonists provide both a useful tool for querying the actions of incretins and glucagon during metabolic disease and a unique drug class to treat type 2 diabetes with unprecedented efficacy.


2015 ◽  
Vol 129 (12) ◽  
pp. 1083-1096 ◽  
Author(s):  
Joseph B. McPhee ◽  
Jonathan D. Schertzer

The bacteria that inhabit us have emerged as factors linking immunity and metabolism. Changes in our microbiota can modify obesity and the immune underpinnings of metabolic diseases such as Type 2 diabetes. Obesity coincides with a low-level systemic inflammation, which also manifests within metabolic tissues such as adipose tissue and liver. This metabolic inflammation can promote insulin resistance and dysglycaemia. However, the obesity and metabolic disease-related immune responses that are compartmentalized in the intestinal environment do not necessarily parallel the inflammatory status of metabolic tissues that control blood glucose. In fact, a permissive immune environment in the gut can exacerbate metabolic tissue inflammation. Unravelling these discordant immune responses in different parts of the body and establishing a connection between nutrients, immunity and the microbiota in the gut is a complex challenge. Recent evidence positions the relationship between host gut barrier function, intestinal T cell responses and specific microbes at the crossroads of obesity and inflammation in metabolic disease. A key problem to be addressed is understanding how metabolite, immune or bacterial signals from the gut are relayed and transferred into systemic or metabolic tissue inflammation that can impair insulin action preceding Type 2 diabetes.


Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractObesity and type 2 diabetes mellitus (T2DM) are common, chronic metabolic disorders with associated significant long-term health problems at global epidemic levels. It is recognised that gut microbiota play a central role in maintaining host homeostasis and through technological advances in both animal and human models it is becoming clear that gut microbiota are heavily involved in key pathophysiological roles in the aetiology and progression of both conditions. This review will focus on current knowledge regarding microbiota interactions with short chain fatty acids, the host inflammatory response, signaling pathways, integrity of the intestinal barrier, the interaction of the gut-brain axis and the subsequent impact on the metabolic health of the host.


Sign in / Sign up

Export Citation Format

Share Document