scholarly journals Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus

Author(s):  
Tamires Marielem Carvalho-Costa ◽  
Rafael Destro Rosa Tiveron ◽  
Maria Tays Mendes ◽  
Cecília Gomes Barbosa ◽  
Jessica Coraiola Nevoa ◽  
...  

Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.

Author(s):  
Rosanna Petrella ◽  
Mara Cucinotta ◽  
Marta A. Mendes ◽  
Charles J. Underwood ◽  
Lucia Colombo

AbstractIn plants, small RNAs have been recognized as key genetic and epigenetic regulators of development. Small RNAs are usually 20 to 30 nucleotides in length and they control, in a sequence specific manner, the transcriptional or post-transcriptional expression of genes. In this review, we present a comprehensive overview of the most recent findings about the function of small RNAs in ovule development, including megasporogenesis and megagametogenesis, both in sexual and apomictic plants. We discuss recent studies on the role of miRNAs, siRNAs and trans-acting RNAs (ta-siRNAs) in early female germline differentiation. The mechanistic complexity and unique regulatory features are reviewed, and possible directions for future research are provided.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Yanxian Li ◽  
Leonardo Bruni ◽  
Alexander Jaramillo-Torres ◽  
Karina Gajardo ◽  
Trond M. Kortner ◽  
...  

Abstract Background Intestinal digesta is commonly used for studying responses of microbiota to dietary shifts, yet evidence is accumulating that it represents an incomplete view of the intestinal microbiota. The present work aims to investigate the differences between digesta- and mucosa-associated intestinal microbiota in Atlantic salmon (Salmo salar) and how they may respond differently to dietary perturbations. In a 16-week seawater feeding trial, Atlantic salmon were fed either a commercially-relevant reference diet or an insect meal diet containing ~ 15% black soldier fly (Hermetia illucens) larvae meal. The digesta- and mucosa-associated distal intestinal microbiota were profiled by 16S rRNA gene sequencing. Results Regardless of diet, we observed substantial differences between digesta- and mucosa-associated intestinal microbiota. Microbial richness and diversity were much higher in the digesta than the mucosa. The insect meal diet altered the distal intestinal microbiota resulting in higher microbial richness and diversity. The diet effect, however, depended on the sample origin. Digesta-associated intestinal microbiota showed more pronounced changes than the mucosa-associated microbiota. Multivariate association analyses identified two mucosa-enriched taxa, Brevinema andersonii and Spirochaetaceae, associated with the expression of genes related to immune responses and barrier function in the distal intestine, respectively. Conclusions Our data show that salmon intestinal digesta and mucosa harbor microbial communities with clear differences. While feeding insects increased microbial richness and diversity in both digesta- and mucosa-associated intestinal microbiota, mucosa-associated intestinal microbiota seems more resilient to variations in the diet composition. To fully unveil the response of intestinal microbiota to dietary changes, concurrent profiling of digesta- and mucosa-associated intestinal microbiota is recommended whenever feasible. Specific taxa enriched in the intestinal mucosa are associated to gene expression related to immune responses and barrier function. Detailed studies are needed on the ecological and functional significance of taxa associated to intestinal microbiota dwelling on the mucosa.


Author(s):  
Christine Hirschberger ◽  
Victoria A Sleight ◽  
Katharine E Criswell ◽  
Stephen J Clark ◽  
J Andrew Gillis

Abstract The origin of the jaw is a long-standing problem in vertebrate evolutionary biology. Classical hypotheses of serial homology propose that the upper and lower jaw evolved through modifications of dorsal and ventral gill arch skeletal elements, respectively. If the jaw and gill arches are derived members of a primitive branchial series, we predict that they would share common developmental patterning mechanisms. Using candidate and RNAseq/differential gene expression analyses, we find broad conservation of dorsoventral patterning mechanisms within the developing mandibular, hyoid and gill arches of a cartilaginous fish, the skate (Leucoraja erinacea). Shared features include expression of genes encoding members of the ventralising BMP and endothelin signalling pathways and their effectors, the joint markers nkx3.2 and gdf5 and pro-chondrogenic transcription factor barx1, and the dorsal territory marker pou3f3. Additionally, we find that mesenchymal expression of eya1/six1 is an ancestral feature of the mandibular arch of jawed vertebrates, while differences in notch signalling distinguish the mandibular and gill arches in skate. Comparative transcriptomic analyses of mandibular and gill arch tissues reveal additional genes differentially expressed along the dorsoventral axis of the pharyngeal arches, including scamp5 as a novel marker of the dorsal mandibular arch, as well as distinct transcriptional features of mandibular and gill arch muscle progenitors and developing gill buds. Taken together, our findings reveal conserved patterning mechanisms in the pharyngeal arches of jawed vertebrates, consistent with serial homology of their skeletal derivatives, as well as unique transcriptional features that may underpin distinct jaw and gill arch morphologies.


Author(s):  
Erik A.L. Biessen ◽  
Theo J.C. Van Berkel

While the promise of oligonucleotide therapeutics, such as (chemically modified) ASO (antisense oligonucleotides) and short interfering RNAs, is undisputed from their introduction onwards, their unfavorable pharmacokinetics and intrinsic capacity to mobilize innate immune responses, were limiting widespread clinical use. However, these major setbacks have been tackled by breakthroughs in chemistry, stability and delivery. When aiming an intervention hepatic targets, such as lipid and sugar metabolism, coagulation, not to mention cancer and virus infection, introduction of N-acetylgalactosamine aided targeting technology has advanced the field profoundly and by now a dozen of N-acetylgalactosamine therapeutics for these indications have been approved for clinical use or have progressed to clinical trial stage 2 to 3 testing. This technology, in combination with major advances in oligonucleotide stability allows safe and durable intervention in targets that were previously deemed undruggable, such as Lp(a) and PCSK9, at high efficacy and specificity, often with as little as 2 doses per year. Their successful use even the most visionary would not have predicted 2 decades ago. Here, we will review the evolution of N-acetylgalactosamine technology. We shall outline their fundamental design principles and merits, and their application for the delivery of oligonucleotide therapeutics to the liver. Finally, we will discuss the perspectives of N-acetylgalactosamine technology and propose directions for future research in receptor targeted delivery of these gene medicines.


2014 ◽  
Vol 109 (8) ◽  
pp. 1005-1013 ◽  
Author(s):  
Ana Luiza Cassin Duz ◽  
Paula Melo de Abreu Vieira ◽  
Bruno Mendes Roatt ◽  
Rodrigo Dian Oliveira Aguiar-Soares ◽  
Jamille Mirelle de Oliveira Cardoso ◽  
...  

2013 ◽  
Vol 394 (7) ◽  
pp. 909-918 ◽  
Author(s):  
Srividya Vasu ◽  
Neville H. McClenaghan ◽  
Jane T. McCluskey ◽  
Peter R. Flatt

Abstract The novel insulin-secreting human pancreatic β-cell line, 1.1B4, demonstrates stability in culture and many of the secretory functional attributes of human pancreatic β-cells. This study investigated the cellular responses of 1.1B4 cells to lipotoxicity. Chronic 18-h exposure of 1.1B4 cells to 0.5 mm palmitate resulted in decreased cell viability and insulin content. Secretory responses to classical insulinotropic agents and cellular Ca2+ handling were also impaired. Palmitate decreased glucokinase activity and mRNA expression of genes involved in secretory function but up-regulated mRNA expression of HSPA5, EIF2A, and EIF2AK3, implicating activation of the endoplasmic reticulum stress response. Palmitate also induced DNA damage and apoptosis of 1.1B4 cells. These responses were accompanied by increased gene expression of the antioxidant enzymes SOD1, SOD2, CAT and GPX1. This study details molecular mechanisms underlying lipotoxicity in 1.1B4 cells and indicates the potential value of the novel β-cell line for future research.


2010 ◽  
Vol 124 (2) ◽  
pp. 219-224 ◽  
Author(s):  
Leony Cristina Caetano ◽  
José Clóvis do Prado ◽  
Miriam Paula Alonso Toldo ◽  
Ana Amélia Carraro Abrahão

2016 ◽  
Vol 46 (10) ◽  
pp. 1695-1700
Author(s):  
Carlos André Bahry ◽  
Paulo Dejalma Zimmer

ABSTRACT: Evaluation of differential candidate gene expression in contrasting soybean seeds is an auxiliary tool in the partial elucidation of processes involved in seeds formation, as well as it contributes to the generation of new information that can be used in future research or in the development of r genetic superior constitutions. The aim of this study was to evaluate the expression of two candidate genes, SBP and leginsulin genes, possibly involved in seed quality, in contrasting coats of four soybean genotypes. Two cultivars of yellow soybeans were used, BMX Potência RR and CD 202, and two lines of black soybean, TP and IAC. Gene expression was evaluated using qPCR in seven stages of development from seed coats for four genotypes, at 25, 30, 35, 40, 45, 50, and 55 days after anthesis. The design was completely randomized, with three replications. Data were subjected to analysis of variance and means compared by Tukey's test at 5% probability. SBP and leginsulin gene have higher expression in the early phases of development from seed coats of BMX Potência RR cultivar, followed by the IAC line. These genotypes are therefore of interest for further research involving these genes.


Sign in / Sign up

Export Citation Format

Share Document