scholarly journals Early Metabolic Benefits of Switching Hydrocortisone to Modified Release Hydrocortisone in Adult Adrenal Insufficiency

2021 ◽  
Vol 12 ◽  
Author(s):  
Christopher A. M. Bannon ◽  
Daniel Border ◽  
Petra Hanson ◽  
John Hattersley ◽  
Martin O. Weickert ◽  
...  

PurposeTo compare metabolic effects of modified release hydrocortisone (MR-HC) with standard hydrocortisone (HC) therapies in adults with Adrenal Insufficiency (AI).MethodsAdult patients (n = 12) with AI, established on HC therapy, were recruited from Endocrinology clinics at University Hospitals Coventry and Warwickshire (UHCW), UK. Baseline (HC) metabolic assessments included fasting serum HbA1C, lipid and thyroid profiles, accurate measures of body composition (BodPod), and 24-h continuous measures of energy expenditure including Sleeping Metabolic Rate (SMR) using indirect calorimetry within the Human Metabolism Research Unit, UHCW. All participants then switched HC to MR-HC with repeat (MR-HC) metabolic assessments at 3 months. Paired-sample t-tests were used for data comparisons between HC and MR-HC assessments: P-value <0.05 was considered significant.ResultsFollowing exclusion of 2 participants, analyses were based on 10 participants. Compared with baseline HC data, following 3 months of MR-HC therapy mean fat mass reduced significantly by −3.2 kg (95% CI: −6.0 to −0.4). Mean (SD) baseline HC fat mass vs repeat MR-HC fat mass: 31.9 kg (15.2) vs 28.7 kg (12.8) respectively, P = 0.03. Mean SMR increased significantly by +77 kcal/24 h (95% CI: 10–146). Mean (SD) baseline HC SMR vs repeat MR-HC SMR: 1,517 kcal/24 h (301) vs 1,594 kcal/24 h (344) respectively, P = 0.03. Mean body fat percentage reduced significantly by −3.4% (95% CI: −6.5 to −0.2). Other measures of body composition, energy expenditure, and biochemical analytes were equivalent between HC and MR-HC assessments.ConclusionsIn adults with AI, switching from standard HC to MR-HC associates with early metabolic benefits of reduced fat mass and increased SMR.

Author(s):  
Shai Olansky ◽  
Kayleigh M. Beaudry ◽  
Stacey Woods ◽  
Erin Barbour-Tuck ◽  
Kimberley L. Gammage ◽  
...  

Purpose: The transition to university is often accompanied by the adoption of negative lifestyle habits, which may result in weight and fat gain. While this has been demonstrated during 1st year, little is known about subsequent years. We investigated changes in body composition, energy expenditure, and dietary/energy intake from 1st to 4th year university. Methods: Thirty-eight students (14 males, 24 females) completed a lifestyle questionnaire and had their body mass, fat mass, lean body mass (LBM), and body fat percentage (%BF) measured three times: at the beginning and end of 1st year, and end of 4th year. Results: During 1st year, body mass, fat mass, LBM, and %BF increased (+3.2 ± 3.8 kg, +2.5 ± 3.0 kg, +0.7 ± 2.1 kg, +2.3 ± 4.9%, respectively; p < 0.01), while daily energy intake and expenditure decreased (−359 ± 1019 kcal·d−1 and −434 ± 786 kcal·d−1, respectively; p < 0.01). Between the end of 1st year and end of 4th year, body mass, LBM, and energy expenditure increased (+3.2 ± 3.8 kg, +1.3 ± 2.9 kg, +209 ± 703 kcal·d−1, respectively; p ≤ 0.05), while %BF, fat mass, and energy intake did not change. Conclusions: Although %BF and fat mass remained stable from the end of 1st year to the end of 4th year in this group of university students, the positive increase in energy expenditure was not enough to reverse the weight and fat gained during 1st year.


2021 ◽  
pp. 1-27
Author(s):  
Masoome Piri Damaghi ◽  
Atieh Mirzababaei ◽  
Sajjad Moradi ◽  
Elnaz Daneshzad ◽  
Atefeh Tavakoli ◽  
...  

Abstract Background: Essential amino acids (EAAs) promote the process of regulating muscle synthesis. Thus, whey protein that contains higher amounts of EAA can have a considerable effect on modifying muscle synthesis. However, there is insufficient evidence regarding the effect of soy and whey protein supplementation on body composition. Thus, we sought to perform a meta-analysis of published Randomized Clinical Trials that examined the effect of whey protein supplementation and soy protein supplementation on body composition (lean body mass, fat mass, body mass and body fat percentage) in adults. Methods: We searched PubMed, Scopus, and Google Scholar, up to August 2020, for all relevant published articles assessing soy protein supplementation and whey protein supplementation on body composition parameters. We included all Randomized Clinical Trials that investigated the effect of whey protein supplementation and soy protein supplementation on body composition in adults. Pooled means and standard deviations (SD) were calculated using random-effects models. Subgroup analysis was applied to discern possible sources of heterogeneity. Results: After excluding non-relevant articles, 10 studies, with 596 participants, remained in this study. We found a significant increase in lean body mass after whey protein supplementation weighted mean difference (WMD: 0.91; 95% CI: 0.15, 1.67. P= 0.019). Subgroup analysis, for whey protein, indicated that there was a significant increase in lean body mass in individuals concomitant to exercise (WMD: 1.24; 95% CI: 0.47, 2.00; P= 0.001). There was a significant increase in lean body mass in individuals who received 12 or less weeks of whey protein (WMD: 1.91; 95% CI: 1.18, 2.63; P<0.0001). We observed no significant change between whey protein supplementation and body mass, fat mass, and body fat percentage. We found no significant change between soy protein supplementation and lean body mass, body mass, fat mass, and body fat percentage. Subgroup analysis for soy protein indicated there was a significant increase in lean body mass in individuals who supplemented for 12 or less weeks with soy protein (WMD: 1.48; 95% CI: 1.07, 1.89; P< 0.0001). Conclusion: Whey protein supplementation significantly improved body composition via increases in lean body mass, without influencing fat mass, body mass, and body fat percentage.


2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Yang Niu ◽  
Xue-lin Zhao ◽  
Hui-juan Ruan ◽  
Xiao-meng Mao ◽  
Qing-ya Tang

Abstract Background Current adult studies suggest that uric acid (UA) is associated with body fat, but the relationship in obese children is unclear. Thus, we aim to evaluate the association between uric acid and body composition of obese children. Methods A total of 79 obese children were included in this study, and 52 children (34 boys and 18 girls) underwent a 6-week weight loss camp, including 34 boys and 18 girls. Six-week weight-loss interventions were performed on all participants through aerobic exercise and appropriate dietary control. Laboratory tests and body composition were collected before and after the intervention. Results Before the intervention, correlation analysis demonstrated that uric acid was positively correlated with height, weight, body mass index (BMI), waist circumference, hip circumference, fat mass (FM), and free fat mass (FFM) with adjusting for age and gender (P < 0.05). After 6 weeks of intervention, the participants gained 3.12 ± 0.85 cm in height, body fat percentage decreased by 7.23 ± 1.97%, and lost 10.30 ± 2.83 kg in weight. Univariate and multivariate analysis indicated that uric acid at baseline was associated with FM reduction during weight loss (P < 0.05). Conclusions This study is the first report that uric acid is associated with BMI and FM, and may play an important role in the reduction of FM during weight loss in obese children and adolescents. The interaction between UA and adiposity factors and its underlying mechanisms need to be further explored. Trial registration This study was registered in Clinical Trials.gov (NCT03490448) and approved by the Ethics Committee of Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.


2015 ◽  
Vol 228 (3) ◽  
pp. 127-134 ◽  
Author(s):  
Amanda E Brandon ◽  
Ella Stuart ◽  
Simon J Leslie ◽  
Kyle L Hoehn ◽  
David E James ◽  
...  

An important regulator of fatty acid oxidation (FAO) is the allosteric inhibition of CPT-1 by malonyl-CoA produced by the enzyme acetyl-CoA carboxylase 2 (ACC2). Initial studies suggested that deletion of Acc2 (Acacb) increased fat oxidation and reduced adipose tissue mass but in an independently generated strain of Acc2 knockout mice we observed increased whole-body and skeletal muscle FAO and a compensatory increase in muscle glycogen stores without changes in glucose tolerance, energy expenditure or fat mass in young mice (12–16 weeks). The aim of the present study was to determine whether there was any effect of age or housing at thermoneutrality (29 °C; which reduces total energy expenditure) on the phenotype of Acc2 knockout mice. At 42–54 weeks of age, male WT and Acc2−/− mice had similar body weight, fat mass, muscle triglyceride content and glucose tolerance. Consistent with younger Acc2−/− mice, aged Acc2−/− mice showed increased whole-body FAO (24 h average respiratory exchange ratio=0.95±0.02 and 0.92±0.02 for WT and Acc2−/− mice respectively, P<0.05) and skeletal muscle glycogen content (+60%, P<0.05) without any detectable change in whole-body energy expenditure. Hyperinsulinaemic–euglycaemic clamp studies revealed no difference in insulin action between groups with similar glucose infusion rates and tissue glucose uptake. Housing Acc2−/− mice at 29 °C did not alter body composition, glucose tolerance or the effects of fat feeding compared with WT mice. These results confirm that manipulation of Acc2 may alter FAO in mice, but this has little impact on body composition or insulin action.


2017 ◽  
Vol 45 (4) ◽  
pp. 320-326 ◽  
Author(s):  
Kozeta Miliku ◽  
Hanneke Bakker ◽  
Eiske M. Dorresteijn ◽  
Karlien Cransberg ◽  
Oscar H. Franco ◽  
...  

Background: Creatinine and cystatin C concentrations are commonly used to estimate glomerular filtration rate (eGFR) in clinical practice and epidemiological studies. To estimate the influence of different body composition measures on eGFR from creatinine and cystatin C blood concentrations, we compared the associations of different anthropometric and body composition measures with eGFR derived from creatinine (eGFRcreat) and cystatin C (eGFRcystC) blood concentrations. Methods: In a population-based cohort study among 4,305 children aged 6.0 years (95% range 5.7-8.0), we measured weight and height and calculated body mass index (BMI) and body surface area (BSA), and lean and fat mass using dual-energy X-ray absorptiometry. At the same age, we measured creatinine and cystatin C blood concentrations and estimated the GFR. Results: Correlation between eGFR based on creatinine and cystatin C concentrations was r = 0.40 (p value <0.01). Higher BMI was associated with lower eGFRcystC but not with eGFRcreat. Higher BSA was associated with higher eGFRcreat and lower eGFRcystC (p value <0.05). Lean and fat mass percentages were associated with eGFRcreat but not with eGFRcystC. Conclusion: Our findings suggest that both eGFRcreat and eGFRcystC are influenced by BMI and BSA. eGFRcreat is more strongly influenced by body composition than eGFRcystC.


Sports ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 85 ◽  
Author(s):  
Logan Posthumus ◽  
Campbell Macgregor ◽  
Paul Winwood ◽  
Katrina Darry ◽  
Matthew Driller ◽  
...  

This study explored the physical and fitness characteristics of elite professional rugby union players and examined the relationships between these characteristics within forwards and backs. Thirty-nine elite professional rugby union players from the New Zealand Super Rugby Championship participated in this study. Body composition was measured using dual-energy X-ray absorptiometry alongside anthropometrics. Fitness characteristics included various strength, power, speed, and aerobic fitness measures. Forwards were significantly (p ≤ 0.01) taller and heavier than backs, and possessed greater lean mass, fat mass, fat percentage, bone mass, and skinfolds. Forwards demonstrated greater strength and absolute power measures than backs (p = 0.02), but were slower and possessed less aerobic fitness (p ≤ 0.01). Skinfolds demonstrated very large correlations with relative power (r = −0.84) and speed (r = 0.75) measures within forwards, while backs demonstrated large correlations between skinfolds and aerobic fitness (r = −0.54). Fat mass and fat percentage demonstrated very large correlations with speed (r = 0.71) and aerobic fitness (r = −0.70) measures within forwards. Skinfolds, fat mass, and fat percentage relate strongly to key fitness characteristics required for elite professional rugby union performance. Individual and positional monitoring is important due to the clear differences between positions.


Retos ◽  
2020 ◽  
pp. 539-546
Author(s):  
Luis Hebert Palma Pulido ◽  
Carlos Hernán Méndez Díaz ◽  
Alfonso Cespedes Manrrique ◽  
Jorge Andrés Castro Mejía ◽  
Alejandro Viveros Restrepo ◽  
...  

 El siguiente estudio, tuvo como finalidad, determinar la correlación entre la composición corporal y la condición física en niños de sexto grado de la Institución Educativa de Tuluá, Colombia. El estudio fue no experimental, descriptivo y de alcance correlacional. La valoración de la composición corporal, se realizó mediante el índice de masa corporal y el porcentaje de grasa (fórmula de Slaughter y Lohmann). La condición física, se determinó por medio de la batería Fitnessgram. La muestra fue de 193 niños y niñas, entre ocho y 12 años. Los resultados se determinaron, por medio de estadísticos descriptivos y correlación de Pearson. Estos resultados, evidenciaron una r=-0,52 y -0,72 para niño y niña respectivamente, entre el porcentaje de grasa y la capacidad cardiovascular. Las correlaciones entre el índice de masa corporal y peso corporal, con el porcentaje de grasa fueron, r=0,59 niña 0,76 y niño y r=0,46 niña y 0,67 niño respectivamente, indicando que, a mayor masa corporal mayor grasa. La correlación entre masa grasa y el test de barra fija fue inversa, pero no alta, r=-0,23 y -0,24, sin embaro, cuando este test se correlacionó con el índice de masa corporal, dicha correlación fue mayor, r=-0,57 y -0,78, reflejando que, la masa corporal, afectó la resistencia en la barra. La flexibilidad y agilidad, no se alteraron por la masa grasa, r < 0,20. Como conclusión, se evidencia que, la masa grasa puede disminuir la capacidad cardiovascular y resistencia a la fuerza, sin embargo, la flexibilidad y la velocidad-agilidad pueden no alterarse.  Abstract. The following study aimed at determining the correlation between body composition and physical condition in sixth grade students from the high school Institución Educativa Moderna in Tuluá, Colombia. It was carried as a non-experimental, descriptive, and correlational study. The assessment of body composition was carried out using the body mass index and the fat percentage based on Slaughter and Lohmann formula. Physical condition was determined by using the Fitnessgram battery. The sample consisted of 193 boys and girls, around eight and 12 years old. The results were determined by means of descriptive statistics and Pearson correlation. These results showed r = -0.52 and -0.72 for boys and girls respectively, after correlating the percentage of fat and cardiovascular capacity. The correlation of their body mass index and their body weight, towards the percentage of fat were: r = 0.59 girl, 0.76 boy and r = 0.46 girl and 0.67 boy respectively, indicating that, the higher the body mass the higher the increase of fat. The correlation between fat mass and the fixed bar test was inverse, but not high: r = -0.23 and -0.24. However, when this test was correlated with the body mass index, that correlation was higher: r = -0.57 and -0.78, reflecting that the body mass affected the resistance at the bar. Flexibility and agility were not altered by fat mass: r <0.20. In conclusion, it is evidenced that fat mass can decrease cardiovascular capacity and resistance to strength, however, flexibility and speed-agility may not be altered.


2016 ◽  
Vol 25 (4) ◽  
pp. 364-370 ◽  
Author(s):  
Radamés M.V. Medeiros ◽  
Eduardo S. Alves ◽  
Valdir A. Lemos ◽  
Paulo A. Schwingel ◽  
Andressa da Silva ◽  
...  

Context:Body-composition assessments of high-performance athletes are very important for identifying physical performance potential. Although the relationship between the kinanthropometric characteristics and performance abilities of Olympic swimmers is extremely important, this subject is not completely understood for Paralympic swimmers.Objective:To investigate the relationship between body composition and sport performance in Brazilian Paralympic swimmers 6 mo after training.Design:Experimental pre/posttest design.Setting:Research laboratory and field evaluations of swimming were conducted to verify the 50-m freestyle time of each athlete.Participants:17 Brazilian Paralympic swim team athletes (12 men, 5 women).Main Outcome Measures:Body-composition assessments were performed using a BOD POD, and swimming performance was assessed using the 50-m freestyle, which was performed twice: before and after 6 mo of training.Results:Increased lean mass and significantly reduced relative fat mass and swimming time (P < .05) were observed 6 mo after training. Furthermore, a positive correlation between body-fat percentage and performance (r = .66, P < .05) was observed, but there was no significant correlation between body density and performance (r = –.14, P > .05).Conclusions:After a 6-mo training period, Paralympic swimmers presented reduced fat mass and increased lean body mass associated with performance, as measured by 50-m freestyle time. These data suggest that reduced fat-mass percentage was significantly correlated with improved swimming performance in Paralympic athletes.


2020 ◽  
Vol 24 (5) ◽  
pp. 265-270
Author(s):  
Mehmet Kale ◽  
Erkan Akdoğan

Background and Study Aim. The purpose of this study was to investigate of the relationships between total/segmental body composition and anaerobic performance parameters in female handball players. Material and Methods. Voluntary 16 women handball players (age= 19.6±2.6years, body height= 168.0±5.5cm, body weight= 64.7±10.7kg), trained last 3 years, were participated to the study. Twelve of them were students from Faculty of Sports Sciences. All measurement and tests were completed in the week right after Turkish Women Handball 1th League. Total and segmental body composition parameters (body fat percentage, body fat mass, lean body mass, leg fat percentage, leg fat mass, lean leg mass, torso fat percentage, torso fat mass, and lean torso mass) of each player were evaluated with dual-energy X-ray absorptiometry method. Squat jump test for explosive power, countermovement jump test for elastic (reactive) power, and Wingate test for anaerobic power (WAnT AP) and anaerobic capacity (WAnT AC) were used. Relationships of total/segmental body composition parameters with jump and anaerobic power-capacity parameters were analysed with Pearson correlation and the probability level was set to p£0.05. Results. As a result of statistical analyses, there were negative relationships (p<0.05) between anaerobic performance parameters (countermovement jump and anaerobic power-capacity) and total/segmental body composition parameters except for lean body mass, lean leg mass, and lean torso mass. Conclusions. Total/segmental body composition parameters based on endomorphy had negative effects on explosive power, elastic power, WAnT AP and WAnT AC. It is suggested that coaches should not allow female handball players to rise in ectomorphy for the anaerobic performance loss in the season finale.


2019 ◽  
Author(s):  
Jun Xi Liu ◽  
Shiu Lun Au Yeung ◽  
Man Ki Kwok ◽  
June Yue Yan Leung ◽  
Lai Ling Hui ◽  
...  

AbstractBackgroundHigher alanine transaminase (ALT) is positively associated with diabetes but inversely associated with body mass index (BMI) in Mendelian randomization (MR) studies, suggesting liver function may affect body composition. To clarify, we assessed the association of liver function with muscle and fat mass observationally with two-sample MR as a validation.MethodsIn the population-representative “Children of 1997” birth cohort, we used multivariable linear regression to assess the adjusted associations of ALT and alkaline phosphatase (ALP) (IU/L) at ~17.5 years with muscle mass (kg) and body fat percentage (%). Genetic variants predicting ALT, ALP and gamma glutamyltransferase (GGT) (100% change in concentration) were applied to fat-free and fat mass (kg) in the UK Biobank (n=~331,000) to obtain unconfounded estimates using MR.ResultsObservationally, ALT was positively associated with muscle mass (0.11, 95% confidence interval (CI) 0.10 to 0.12) and fat percentage (0.15, 95% CI 0.13 to 0.17). ALP was inversely associated with muscle mass (−0.03, 95% CI −0.04 to −0.02) and fat percentage (−0.02, 95% CI −0.03 to −0.01). Using MR, ALT was inversely associated with fat-free mass (−0.41, 95% CI −0.64 to −0.19) and fat mass (−0.58, 95% CI −0.85 to −0.30). ALP was not clearly associated with body composition. GGT was positively associated with fat-free (0.30, 95% CI 0.01 to 0.06) and fat mass (0.41, 95% CI 0.10 to 0.71).ConclusionALT reducing fat-free mass provides a possible pathway for the positive association of ALT with diabetes, and suggests a potential target of intervention.


Sign in / Sign up

Export Citation Format

Share Document