scholarly journals Evolution of the Insulin Gene: Changes in Gene Number, Sequence, and Processing

2021 ◽  
Vol 12 ◽  
Author(s):  
David M. Irwin

Insulin has not only made major contributions to the field of clinical medicine but has also played central roles in the advancement of fundamental molecular biology, including evolution. Insulin is essential for the health of vertebrate species, yet its function has been modified in species-specific manners. With the advent of genome sequencing, large numbers of insulin coding sequences have been identified in genomes of diverse vertebrates and have revealed unexpected changes in the numbers of genes within genomes and in their sequence that likely impact biological function. The presence of multiple insulin genes within a genome potentially allows specialization of an insulin gene. Discovery of changes in proteolytic processing suggests that the typical two-chain hormone structure is not necessary for all of inulin’s biological activities.

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1898
Author(s):  
Fauzia Izzati ◽  
Mega Ferdina Warsito ◽  
Asep Bayu ◽  
Anggia Prasetyoputri ◽  
Akhirta Atikana ◽  
...  

Marine invertebrates have been reported to be an excellent resource of many novel bioactive compounds. Studies reported that Indonesia has remarkable yet underexplored marine natural products, with a high chemical diversity and a broad spectrum of biological activities. This review discusses recent updates on the exploration of marine natural products from Indonesian marine invertebrates (i.e., sponges, tunicates, and soft corals) throughout 2007–2020. This paper summarizes the structural diversity and biological function of the bioactive compounds isolated from Indonesian marine invertebrates as antimicrobial, antifungal, anticancer, and antiviral, while also presenting the opportunity for further investigation of novel compounds derived from Indonesian marine invertebrates.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 518
Author(s):  
Siriporn Korinsak ◽  
Clive T. Darwell ◽  
Samart Wanchana ◽  
Lawan Praphaisal ◽  
Siripar Korinsak ◽  
...  

Bacterial leaf blight (BLB) is a serious disease affecting global rice agriculture caused by Xanthomonas oryzae pv. oryzae (Xoo). Most resistant rice lines are dependent on single genes that are vulnerable to resistance breakdown caused by pathogen mutation. Here we describe a genome-wide association study of 222 predominantly Thai rice accessions assayed by phenotypic screening against 20 Xoo isolates. Loci corresponding to BLB resistance were detected using >142,000 SNPs. We identified 147 genes according to employed significance thresholds across chromosomes 1–6, 8, 9 and 11. Moreover, 127 of identified genes are located on chromosomal regions outside estimated Linkage Disequilibrium influences of known resistance genes, potentially indicating novel BLB resistance markers. However, significantly associated SNPs only occurred across a maximum of six Xoo isolates indicating that the development of broad-spectrum Xoo strain varieties may prove challenging. Analyses indicated a range of gene functions likely underpinning BLB resistance. In accordance with previous studies of accession panels focusing on indica varieties, our germplasm displays large numbers of SNPs associated with resistance. Despite encouraging data suggesting that many loci contribute to resistance, our findings corroborate previous inferences that multi-strain resistant varieties may not be easily realised in breeding programs without resorting to multi-locus strategies.


2005 ◽  
Vol 68 (6) ◽  
pp. 1217-1221 ◽  
Author(s):  
PAVEL KRCMAR ◽  
EVA RENCOVA

A sensitive and rapid method for the quantitative detection of bovine-, ovine-, swine-, and chicken-specific mitochondrial DNA sequences based on real-time PCR has been developed. The specificity of the primers and probes for real-time PCR has been tested using DNA samples of other vertebrate species that may also be present in rendered products. The quantitative detection was performed with dual-labeled probes (TaqMan) using absolute quantification with external standards of single species meat-and-bone meals. This method facilitates the detection of 0.01% of the target species–derived material in concentrate feed mixtures and fish meals.


2019 ◽  
Author(s):  
Md. Jakaria ◽  
Kowshika Sarker ◽  
Mostofa Rafid Uddin ◽  
Md. Mohaiminul Islam ◽  
Trisha Das ◽  
...  

AbstractThe propitious developments in molecular biology and next generation sequencing have enabled the possibility for DNA storage technologies. However, the full application and power of our genomic revolution have not been fully utilized in clinical medicine given a lack of transition from research to real world clinical practice. This has identified an increasing need for an operating system which allows for the transition from research to clinical use. We present eMED-DNA, an in silico operating system for archiving and managing all forms of electronic health records (EHRs) within one’s own copy of the sequenced genome to aid in the application and integration of genomic medicine within real world clinical practice. We incorporated an efficient and sophisticated in-DNA file management system for the lossless management of EHRs within a genome. This represents the first in silico integrative system which would bring closer the utopian ideal for integrating genotypic data with phenotypic clinical data for future medical practice.


Author(s):  
Robert G. Haight ◽  
Amy C. Kinsley ◽  
Szu-Yu Kao ◽  
Denys Yemshanov ◽  
Nicholas B. D. Phelps

AbstractThe accidental spread of aquatic invasive species (AIS) by recreational boaters is a major concern of state and county environmental planners in the USA. While programs for watercraft inspection to educate boaters and slow AIS spread are common practice, large numbers of boats and waterbodies, together with limited budgets, make program design difficult. To facilitate program design, we developed an integer programming model for allocation of scarce inspection resources among lakes. Our model uses species-specific infestation status of lakes and estimates of boat movement between lakes. The objective is to select lakes for inspection stations to maximize the number of risky boats inspected, where risky boats are ones that move from infested to uninfested lakes. We apply our model in Stearns County in central Minnesota, USA, to prioritize lakes for inspection stations and evaluate alternative management objectives. With an objective of protecting uninfested lakes within and outside Stearns County, the optimal policy is to locate stations at infested lakes having the most boats departing for uninfested lakes inside and outside the county. With an objective of protecting only Stearns County lakes, the optimal policy is to locate stations at both infested and uninfested lakes having the riskiest boats arriving from within and outside the county and departing to in-county lakes. The tradeoff between these objectives is significant.


2003 ◽  
Vol 71 (3) ◽  
pp. 1548-1550 ◽  
Author(s):  
Timothy J. Tripp ◽  
John K. McCormick ◽  
Jennifer M. Webb ◽  
Patrick M. Schlievert

ABSTRACT The cocrystal structure of streptococcal pyrogenic exotoxin C (SPE C) with HLA-DR2a (DRA*0101,DRB5*0101) revealed a zinc-dependent interaction site through residues 167, 201, and 203 on SPE C and residue 81 on the β-chain of HLA-DR2a (DRA*0101,DRB5*0101). Mutation of these SPE C residues resulted in dramatically reduced biological activities. Thus, the zinc-dependent major histocompatibility complex II binding site is critical for maximal biological function of SPE C.


1985 ◽  
Vol 107 (2) ◽  
pp. 147-157 ◽  
Author(s):  
H. Imura ◽  
Y. Kato ◽  
Y. Nakai ◽  
K. Nakao ◽  
I. Tanaka ◽  
...  

ABSTRACT Advances in techniques in molecular biology have facilitated the research into endogenous opioids and related peptides in several ways. The organization and expression of genes and the primary structure of three precursor proteins of opioid peptides have been elucidated. These studies predicted the presence of potentially bioactive peptides, which has been confirmed by later studies. Advances in techniques in protein chemistry have helped to elucidate the distribution and molecular forms of endogenous opioids and related peptides in the body, and the processing of precursor proteins. Studies on the function of these peptides have shown a broad spectrum of actions. Leumorphin, a newly identified peptide, has been shown to exhibit unique biological activities. In spite of extensive studies, the physiological and pathophysiological significance of opioid peptide systems are not yet completely understood. This is mainly due to the paucity of our knowledge about opioid receptors. Further studies on the subtypes of opioid receptors will help to elucidate all aspects of the function of endogenous opioids and related peptides. J. Endocr. (1985) 107, 147–157


1946 ◽  
Vol 133 (872) ◽  
pp. 235-248 ◽  

Since a review of the conditions under which siderocytes appear will support a hypothesis that it is an ageing erythrocyte at least as strongly as Grüneberg’s (1941 a ) theory that it should be considered as a young cell, a search was made in blood films of stored mammalian blood and large numbers of siderocytes were found. The conditions affecting the rate of appearance of the siderocytes were studied, and it was found that adverse conditions would hasten their appearance. The relationship of the siderotic material to the 'easily split’ blood iron was also considered, and it seems probable that both are derived from a special and identical fraction of ‘haemoglobin’, and that this phenomenon is related to an intracorpuscular bile pigment formation. The occurrence of siderocytosis after the ingestion of acetyl phenylhydrazine by a ‘normal’ human being was followed, and a close correlation between siderocytosis, erythrocyte destruction and urinary siderosis as described by Peyton Rous (1918) is shown. The siderocyte extrudes its siderotic granules and reverts to a state at present morphologically indistinguishable from the normal erythrocyte, but appears to be susceptible of phagocytosis at this stage. The application of siderocyte counts to clinical medicine is suggested.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
David Secco ◽  
Chuang Wang ◽  
Huixia Shou ◽  
Matthew D Schultz ◽  
Serge Chiarenza ◽  
...  

Cytosine DNA methylation (mC) is a genome modification that can regulate the expression of coding and non-coding genetic elements. However, little is known about the involvement of mC in response to environmental cues. Using whole genome bisulfite sequencing to assess the spatio-temporal dynamics of mC in rice grown under phosphate starvation and recovery conditions, we identified widespread phosphate starvation-induced changes in mC, preferentially localized in transposable elements (TEs) close to highly induced genes. These changes in mC occurred after changes in nearby gene transcription, were mostly DCL3a-independent, and could partially be propagated through mitosis, however no evidence of meiotic transmission was observed. Similar analyses performed in Arabidopsis revealed a very limited effect of phosphate starvation on mC, suggesting a species-specific mechanism. Overall, this suggests that TEs in proximity to environmentally induced genes are silenced via hypermethylation, and establishes the temporal hierarchy of transcriptional and epigenomic changes in response to stress.


Sign in / Sign up

Export Citation Format

Share Document