scholarly journals A Critical Review of the Evidence That Metformin Is a Putative Anti-Aging Drug That Enhances Healthspan and Extends Lifespan

2021 ◽  
Vol 12 ◽  
Author(s):  
Ibrahim Mohammed ◽  
Morley D. Hollenberg ◽  
Hong Ding ◽  
Chris R. Triggle

The numerous beneficial health outcomes associated with the use of metformin to treat patients with type 2 diabetes (T2DM), together with data from pre-clinical studies in animals including the nematode, C. elegans, and mice have prompted investigations into whether metformin has therapeutic utility as an anti-aging drug that may also extend lifespan. Indeed, clinical trials, including the MILES (Metformin In Longevity Study) and TAME (Targeting Aging with Metformin), have been designed to assess the potential benefits of metformin as an anti-aging drug. Preliminary analysis of results from MILES indicate that metformin may induce anti-aging transcriptional changes; however it remains controversial as to whether metformin is protective in those subjects free of disease. Furthermore, despite clinical use for over 60 years as an anti-diabetic drug, the cellular mechanisms by which metformin exerts either its actions remain unclear. In this review, we have critically evaluated the literature that has investigated the effects of metformin on aging, healthspan and lifespan in humans as well as other species. In preparing this review, particular attention has been placed on the strength and reproducibility of data and quality of the study protocols with respect to the pharmacokinetic and pharmacodynamic properties of metformin. We conclude that despite data in support of anti-aging benefits, the evidence that metformin increases lifespan remains controversial. However, via its ability to reduce early mortality associated with various diseases, including diabetes, cardiovascular disease, cognitive decline and cancer, metformin can improve healthspan thereby extending the period of life spent in good health. Based on the available evidence we conclude that the beneficial effects of metformin on aging and healthspan are primarily indirect via its effects on cellular metabolism and result from its anti-hyperglycemic action, enhancing insulin sensitivity, reduction of oxidative stress and protective effects on the endothelium and vascular function.

2018 ◽  
Vol 24 (3) ◽  
pp. 365-378 ◽  
Author(s):  
Chen Guang-Yi ◽  
Ge Li-Sha ◽  
Li Yue-Chun

The morbidity of myocarditis demonstrates an upward tendency by years, is commonly defined as the inflammation of myocytes and is caused by multiple factors. With the development of the molecular biological technique, great breakthroughs in the diagnosis and understanding of pathophysiological mechanisms of myocarditis have recently been achieved. Several questions remain unresolved, however, including standard treatment approaches to myocarditis, which remain controversial and ambiguous. Heart rate, as an independent risk factor, has been shown to be related to cardiac disease. Recent studies also show that the autonomic nervous system is involved in immunomodulatory myocarditis processes. Heart rate reduction treatment is recommended in myocarditis based on a number of animal experiments and clinical trials. It is possible that heart rate-lowering treatments can help to attenuate the inflammatory response and myocyte injury and reverse ventricular remodeling. However, how to execute the protective effects of heart rate reduction on myocarditis is still not clear. In this review, we discuss the pathogenesis and pathophysiological process of viral myocarditis and propose heart rate lowering as a therapeutic target for myocarditis, especially in light of the third-generation β-blockade carvedilol and funny channel blocker ivabradine. We also highlight some additional beneficial effects of such heart rate reduction agents, including anti-inflammatory, antioxidation, anti-nitrosative stress, anti-fibrosis and antiapoptosis properties.


Genetics ◽  
2002 ◽  
Vol 162 (4) ◽  
pp. 1631-1639
Author(s):  
Yo Suzuki ◽  
Gail A Morris ◽  
Min Han ◽  
William B Wood

Abstract The signaling pathway initiated by the TGF-β family member DBL-1 in Caenorhabditis elegans controls body shape in a dose-dependent manner. Loss-of-function (lf) mutations in the dbl-1 gene cause a short, small body (Sma phenotype), whereas overexpression of dbl-1 causes a long body (Lon phenotype). To understand the cellular mechanisms underlying these phenotypes, we have isolated suppressors of the Sma phenotype resulting from a dbl-1(lf) mutation. Two of these suppressors are mutations in the lon-3 gene, of which four additional alleles are known. We show that lon-3 encodes a collagen that is a component of the C. elegans cuticle. Genetic and reporter-gene expression analyses suggest that lon-3 is involved in determination of body shape and is post-transcriptionally regulated by the dbl-1 pathway. These results support the possibility that TGF-β signaling controls C. elegans body shape by regulating cuticle composition.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 850
Author(s):  
Kristine Guran ◽  
Roxana Buzatu ◽  
Iulia Pinzaru ◽  
Madalina Boruga ◽  
Iasmina Marcovici ◽  
...  

Melissa officinalis is a medicinal herb with an extensive pharmacological profile that has been proven to have beneficial effects in oral and gastrointestinal disorders. However, the effects of this plant in oral, pharyngeal, and colorectal malignancies, types of cancer with an increased incidence in recent years, are less investigated. The present study aims to evaluate the pharmacological profile of a Melissa officinalis total extract for potential benefits in oral, pharynx and colorectal carcinoma. The LC-MS profile of MO total extract (MOte) indicated a rich content in polyphenols, data that support the potent antioxidant capacity exhibited and the antimicrobial activity against both Gram-negative and Gram-positive bacteria. In addition, MOte triggered a dose-dependent and selective decrease in the viability of tumor cells (tongue and pharynx squamous cell carcinomas, and colorectal adenocarcinoma), with the most significant effect being recorded at 100 µg/mL. At the same concentration, MOte exhibited an antiangiogenic effect by inhibiting the process of angiogenesis in ovo. Overall, our findings support the potential benefits of Melissa officinalis leaf total extract as a valuable candidate for the prophylaxis of oral, pharyngeal and colorectal neoplasms.


2018 ◽  
Vol 19 (8) ◽  
pp. 2180 ◽  
Author(s):  
María Ariza ◽  
Tamara Forbes-Hernández ◽  
Patricia Reboredo-Rodríguez ◽  
Sadia Afrin ◽  
Massimiliano Gasparrini ◽  
...  

Strawberry fruits are highly appreciated by consumers worldwide due to their bright red color, typical aroma, and juicy texture. While the biological activity of the complete fruit has been widely studied, the potential beneficial effects of the achenes (commonly named seeds) remain unknown. In addition, when raw fruit and achenes are consumed, the digestion process could alter the release and absorption of their phytochemical compounds, compromising their bioactivity. In the present work, we evaluated the protective effects against oxidative damage of nondigested and digested extracts from strawberry fruit and achenes in human hepatocellular carcinoma (HepG2) cells. For that purpose, cells were treated with different concentration of the extracts prior to incubation with the stressor agent, AAPH (2,2′-azobis(2-amidinopropane) dihydrochloride). Subsequently, intracellular accumulation of reactive oxygen species (ROS) and the percentage of live, dead, and apoptotic cells were determined. Our results demonstrated that all the evaluated fractions were able to counteract the AAPH-induced damage, suggesting that the achenes also present biological activity. The positive effects of both the raw fruit and achenes were maintained after the in vitro digestion process.


2012 ◽  
Vol 302 (3) ◽  
pp. R321-R330 ◽  
Author(s):  
Ahmed A. Elmarakby

Cardiovascular disease (CVD) is the leading cause of mortality worldwide, and it is well known that end-stage renal disease (ESRD) is a profound consequence of the progression of CVD. Present treatments only slow CVD progression to ESRD, and it is imperative that new therapeutic strategies are developed to prevent the incidence of ESRD. Because epoxyeicosatrienoic acids (EETs) have been shown to elicit reno-protective effects in hypertensive animal models, the current review will focus on addressing the reno-protective mechanisms of EETs in CVD. The cytochrome P-450 epoxygenase catalyzes the oxidation of arachidonic acid to EETs. EETs have been identified as endothelium-derived hyperpolarizing factors (EDHFs) with vasodilatory, anti-inflammatory, antihypertensive, and antiplatelet aggregation properties. EETs also have profound effects on vascular migration and proliferation and promote angiogenesis. The progression of CVD has been linked to decreased EETs levels, leading to the concept that EETs should be therapeutically targeted to prevent end-organ damage associated with CVD. However, EETs are quickly degraded by the enzyme soluble epoxide hydrolase (sEH) to their less active diols, dihydroxyeicosatrienoic acids (DHETs). As such, one way to increase EETs level is to inhibit their degradation to DHETs by using sEH inhibitors. Inhibition of sEH has been shown to effectively reduce blood pressure and organ damage in experimental models of CVD. Another approach to target EETs is to develop EET analogs with improved solubility and resistance to auto-oxidation and metabolism by sEH. For example, stable ether EET analogs dilate afferent arterioles and lower blood pressure in hypertensive rodent animal models. EET agonists also improve insulin signaling and vascular function in animal models of metabolic syndrome.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mark G. Sterken ◽  
Marijke H. van Wijk ◽  
Elizabeth C. Quamme ◽  
Joost A. G. Riksen ◽  
Lucinda Carnell ◽  
...  

AbstractEthanol-induced transcriptional changes underlie important physiological responses to ethanol that are likely to contribute to the addictive properties of the drug. We examined the transcriptional responses of Caenorhabditis elegans across a timecourse of ethanol exposure, between 30 min and 8 h, to determine what genes and genetic pathways are regulated in response to ethanol in this model. We found that short exposures to ethanol (up to 2 h) induced expression of metabolic enzymes involved in metabolizing ethanol and retinol, while longer exposure (8 h) had much more profound effects on the transcriptome. Several genes that are known to be involved in the physiological response to ethanol, including direct ethanol targets, were regulated at 8 h of exposure. This longer exposure to ethanol also resulted in the regulation of genes involved in cilia function, which is consistent with an important role for the effects of ethanol on cilia in the deleterious effects of chronic ethanol consumption in humans. Finally, we found that food deprivation for an 8-h period induced gene expression changes that were somewhat ameliorated by the presence of ethanol, supporting previous observations that worms can use ethanol as a calorie source.


2017 ◽  
Vol 37 (suppl_1) ◽  
Author(s):  
Ulka Sachdev ◽  
Xiangdong Cui ◽  
Qian Sun ◽  
Edith Tzeng ◽  
Alex Chen ◽  
...  

Introduction: Millions of Americans are at risk for amputation from severe peripheral arterial disease (PAD) when surgery is not possible. Pro-regenerative and angiogenic agents may improve outcome in that setting. Chloroquine (CQ) promotes wound healing in scleroderma but has not been tested in PAD. CQ promotes healing of ischemic muscle, increases muscle high mobility group box 1 (HMGB1), an inflammatory, pro-angiogenic protein, and activates caspase-1 in myoblasts. We hypothesize that HMGB1 mediates protective effects of CQ and is regulated by caspase-1 in muscle. Controlled rather than indiscriminate release of HMGB1 from damaged muscle may be protective during ischemia. Methods: C2C12 myoblasts in low serum were treated with CQ (0-50μM) ± Ac-YVAD-cmk (10 μg/ml), a caspase-1 inhibitor. HMGB1 release in supernatants was measured using ELISA. Cytotoxicity was assessed by comparing spontaneous lactate dehydrogenase (LDH) activity in culture media from control, treated and maximally lysed cells. CQ (50μg/ml) or placebo treated wild-type and inducible HMGB1 knockout (iHMGB1KO) mice underwent unilateral femoral artery ligation (FAL). Laser Doppler perfusion imaging (LDPI) before and 1,7,14 and 21d after FAL was reported as % improvement over time. ANOVA was used to assess statistical significance among groups. Results: CQ (5-10uM) attenuated spontaneous LDH leak after 12h from serum-depleted myoblasts (p <0.01, N=3), and modestly increased HMGB1 release (p <0.001, N=3). Ac-YVAD-cmk reversed the cytoprotective effects of CQ, significantly raising both LDH activity to 55% of maximal activity and HMGB1 in the supernatant. Compared to d1 post FAL, CQ improved perfusion recovery in WT mice by 300-800% over 21 days (p<0.03, N=7/group), but not in iHMGB1KO mice. Conclusion: We present the novel finding that in nutrient-depleted myoblasts, caspase-1 mediates the survival benefits of CQ and regulates HMGB1 release. In turn, HMGB1 is critical for CQ’s beneficial effects on perfusion after FAL, another stress condition. Regulated HMGB1 release may be immunomodulatory, regenerative and modifiable with drugs like CQ. Altering survival and inflammatory pathways through CQ may present a novel therapeutic strategy in PAD.


Author(s):  
Parinaz Zivarpour ◽  
Željko Reiner ◽  
Jamal Hallajzadeh ◽  
Liaosadat Mirsafaei

: Cardiovascular diseases are some of the major causes of morbidity and mortality in developed or developing countries but in developed countries as well. Cardiac fibrosis is one of the most often pathological changes of heart tissues. It occurs as a result of extracellular matrix proteins accumulation at myocardia. Cardiac fibrosis results in impaired cardiac systolic and diastolic functions and is associated with other effects. Therapies with medicines have not been sufficiently successful in treating chronic diseases such as CVD. Therefore, the interest for therapeutic potential of natural compounds and medicinal plants has increased. Plants such as grapes, berries and peanuts contain a polyphenolic compound called "resveratrol" which has been reported to have various therapeutic properties for a variety of diseases. Studies on laboratory models that show that resveratrol has beneficial effects on cardiovascular diseases including myocardial infarction, high blood pressure cardiomyopathy, thrombosis, cardiac fibrosis, and atherosclerosis. In vitro animal models using resveratrol indicated protective effects on the heart by neutralizing reactive oxygen species, preventing inflammation, increasing neoangiogenesis, dilating blood vessels, suppressing apoptosis and delaying atherosclerosis. In this review, we are presenting experimental and clinical results of studies concerning resveratrol effects on cardiac fibrosis as a CVD outcome in humans.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Christian Werner ◽  
Stephan H Schirmer ◽  
Valerie Pavlickova ◽  
Michael Böhm ◽  
Ulrich Laufs

Objective: Peroxisome proliferator-activated receptor (PPAR)-α and -γ agonists modify lipid and glucose metabolism. The aim of the study was to characterize the effects of the dual PPAR-α/γ agonist aleglitazar on endothelial function, neoangiogenesis and arteriogenesis in mice and on human endothelial progenitor cells (EPC). Methods and Results: Male C57Bl/6 wild-type (WT, normal chow) and apolipoprotein E-deficient (apoE-/-) mice on Western-type diet (WTD) were treated with aleglitazar (10 mg/kg i.p.) or vehicle by daily injection. Hindlimb ischemia was induced by right femoral artery ligation (FAL). ApoE-/- mice on WTD treated with aleglitazar before FAL were characterized by an improvement of endothelial-dependent laser Doppler perfusion (right/left foot ratio 0.40±0.03) 1 week after FAL compared to controls (R/L foot ratio 0.24±0.01; p<0.001). Collateral-dependent perfusion measured under conditions of maximal vasodilatation 1 week after FAL using fluorescent microspheres was impaired in apoE-/- on WTD compared to WT mice (R/L leg ratio in WT 78±13 vs. apoE-/- 56±6; p<0.001) and was normalized by aleglitazar treatment. Neoangiogenesis was measured in-vivo by subcutaneously implanting discs covered with cell-impermeable filters. The vascularized area of the discs was quantified after 14 days by perfusion of the animals with space-filling fluorescent microspheres. Aleglitazar increased neoangiogenesis in WT mice by 178±18% compared to vehicle (p<0.05). Endothelium-dependent relaxation of aortic rings was impaired in apoE-/- mice on WTD for 6 weeks (relaxation to 52±5% of max. contraction) compared to WT animals (relaxation to 18±5% of max. contraction) (p<0.001). Aleglitazar treatment improved endothelial function (relaxation to 39±5% of max. contraction; p<0.05). In parallel, number and function of EPC were improved in mice. Studies in human EPC showed that 1) aleglitazar’s effects were mediated by both PPAR-α and -γ signalling and Akt and 2) migration and colony forming units were up-regulated by aleglitazar in cultivated EPC from CAD patients. Conclusion: The study provides evidence for beneficial effects of the dual PPAR-α/γ agonist aleglitazar on vascular function in addition to or mediated by its metabolic actions.


Sign in / Sign up

Export Citation Format

Share Document