scholarly journals Microclimatic Warming Leads to a Decrease in Species and Growth Form Diversity: Insights From a Tropical Alpine Grassland

2021 ◽  
Vol 9 ◽  
Author(s):  
Sisimac A. Duchicela ◽  
Francisco Cuesta ◽  
Carolina Tovar ◽  
Priscilla Muriel ◽  
Ricardo Jaramillo ◽  
...  

Due to warming, changes in microclimatic temperatures have shifted plant community structure and dynamics in tundra and alpine regions. The directionality and magnitude of these changes are less known for tropical alpine ecosystems. To understand the likely trajectory of these shifts in the Andes, we conducted a warming experiment in the northern Andes—using open-top chambers (OTC). In this study, we ask (1) how do OTCs affect air and soil temperatures in microclimates of tropical alpine regions, year-round and during the dry season? (2) What are the effects of 7 years of warming on (a) the aboveground biomass (AGB) and (b) the plant taxonomic and growth form diversity? We installed five monitoring blocks in 2012 at ca. 4,200 m asl with 20 OTCs and 50 control plots randomly distributed within each block. We measured AGB, plant community diversity, and growth form diversity between 2014 and 2019. After 7 years of warming, we found significant increases in mean monthly (+0.24°C), daily (+0.16°C), and night air temperatures (+0.33°C) inside the OTCs, and the OTCs intensified microclimatic conditions during the dry season. Additionally, OTCs attenuated extreme temperatures—particularly in the soil—and the number of freezing events. AGB significantly increased in OTCs, and by 2019, it was 27% higher in OTCs than in control. These changes were driven mainly by a progressive increment of tussock grasses such as Calamagrostis intermedia, typical of lower elevations. The increase of tussocks led to a significant decrease in species diversity and evenness inside OTCs, but not in species richness after accounting by sampling time. Furthermore, cushions and herbs decreased inside OTCs. Our results show that experimental warming using OTCs in equatorial regions leads to decreased daily thermal amplitude and night temperatures rather than the level of increase in mean temperatures observed in temperate regions. The increase of tussocks and decrease in diversity of species and growth forms due to prolonged modifications in microclimatic temperature might be a step toward shrub-dominated ecosystems. Further research on this topic would help understand shifts in growth form dominance and the direction and rate of change of the system.

1997 ◽  
Vol 34 (6) ◽  
pp. 1397 ◽  
Author(s):  
Peter M. Rice ◽  
J. Christopher Toney ◽  
Donald J. Bedunah ◽  
Clinton E. Carlson

Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 625
Author(s):  
Savanah Laur ◽  
Andre Luiz Biscaia Ribeiro da Silva ◽  
Juan Carlos Díaz-Pérez ◽  
Timothy Coolong

This study evaluated the impact of shade cloth and fogging systems on the microclimate at the plant canopy level and yield of basil (Oscimum basilicum L.), arugula (Eruca vesicaria subsp. Sativa L.), and lettuce (Lactuca sativa L.) planted in mid-September and early October in high tunnels. Fogging systems were installed at canopy level in plots within shaded (30%) and non-shaded high tunnels. Average air temperatures in the shaded high tunnels were 0.9 °C lower than non-shaded high tunnels during the day. Shade cloth significantly reduced soil temperatures during the day and night periods by 1.5 °C and 1.3 °C, respectively, compared to non-shaded treatments. Fogging systems did not have an impact on air temperature, soil temperature, or relative humidity, but did increase canopy leaf wetness. Shade and fogging did not impact the yield of any of the crops grown. Yield was impacted by planting date, with earlier planting result in higher yields of lettuce and basil. Yields for arugula were greater during the second planting date than the first. Planting date and shade cloth interacted to affect the concentrations of macronutrients.


2015 ◽  
Vol 12 (1) ◽  
pp. 23-30 ◽  
Author(s):  
C. Bertrand ◽  
L. González Sotelino ◽  
M. Journée

Abstract. Soil temperatures at various depths are unique parameters useful to describe both the surface energy processes and regional environmental and climate conditions. To provide soil temperature observation in different regions across Belgium for agricultural management as well as for climate research, soil temperatures are recorded in 13 of the 20 automated weather stations operated by the Royal Meteorological Institute (RMI) of Belgium. At each station, soil temperature can be measured at up to 5 different depths (from 5 to 100 cm) in addition to the bare soil and grass temperature records. Although many methods have been developed to identify erroneous air temperatures, little attention has been paid to quality control of soil temperature data. This contribution describes the newly developed semi-automatic quality control of 10-min soil temperatures data at RMI.


2013 ◽  
Vol 10 (7) ◽  
pp. 4465-4479 ◽  
Author(s):  
K. L. Hanis ◽  
M. Tenuta ◽  
B. D. Amiro ◽  
T. N. Papakyriakou

Abstract. Ecosystem-scale methane (CH4) flux (FCH4) over a subarctic fen at Churchill, Manitoba, Canada was measured to understand the magnitude of emissions during spring and fall shoulder seasons, and the growing season in relation to physical and biological conditions. FCH4 was measured using eddy covariance with a closed-path analyser in four years (2008–2011). Cumulative measured annual FCH4 (shoulder plus growing seasons) ranged from 3.0 to 9.6 g CH4 m−2 yr−1 among the four study years, with a mean of 6.5 to 7.1 g CH4 m−2 yr−1 depending upon gap-filling method. Soil temperatures to depths of 50 cm and air temperature were highly correlated with FCH4, with near-surface soil temperature at 5 cm most correlated across spring, fall, and the shoulder and growing seasons. The response of FCH4 to soil temperature at the 5 cm depth and air temperature was more than double in spring to that of fall. Emission episodes were generally not observed during spring thaw. Growing season emissions also depended upon soil and air temperatures but the water table also exerted influence, with FCH4 highest when water was 2–13 cm below and lowest when it was at or above the mean peat surface.


2020 ◽  
Vol 117 (9) ◽  
pp. 4464-4470 ◽  
Author(s):  
Susan Harrison ◽  
Marko J. Spasojevic ◽  
Daijiang Li

Climate strongly shapes plant diversity over large spatial scales, with relatively warm and wet (benign, productive) regions supporting greater numbers of species. Unresolved aspects of this relationship include what causes it, whether it permeates to community diversity at smaller spatial scales, whether it is accompanied by patterns in functional and phylogenetic diversity as some hypotheses predict, and whether it is paralleled by climate-driven changes in diversity over time. Here, studies of Californian plants are reviewed and new analyses are conducted to synthesize climate–diversity relationships in space and time. Across spatial scales and organizational levels, plant diversity is maximized in more productive (wetter) climates, and these consistent spatial relationships are mirrored in losses of taxonomic, functional, and phylogenetic diversity over time during a recent climatic drying trend. These results support the tolerance and climatic niche conservatism hypotheses for climate–diversity relationships, and suggest there is some predictability to future changes in diversity in water-limited climates.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7427
Author(s):  
Hermawan Hermawan ◽  
Jozef Švajlenka

Passive thermal comfort has been widely used to test the thermal performance of a building. The science of active thermal comfort is important to be connected with the science of architecture. The currently developing active thermal comfort is adaptive thermal comfort. Vernacular houses are believed to be able to create thermal comfort for the inhabitants. The present study seeks to analyze the connection between the architectural elements of vernacular houses and adaptive thermal comfort. A mixed method was applied. A quantitative approach was used in the measurement of variables of climate, while a qualitative methodology was employed in an interview on thermal sensations. The connection between architectural elements and adaptive thermal comfort was analyzed by considering the correlation among architectural features, the analysis results of thermal comfort, and the Olgyay and psychrometric diagrams. At the beginning of the rainy season, residents of exposed stone houses had the highest comfortable percentage of 31%. In the middle of the rainy season, the highest percentage of comfort was obtained by residents of exposed brick and wooden houses on the beach at 39%. The lowest comfortable percentage experienced by residents of exposed stone houses at the beginning of the dry season was 0%. The beginning of the dry season in mountainous areas has air temperatures that are too low, making residents uncomfortable. The study results demonstrate that adaptive thermal comfort is related to using a room for adaptation to create thermal comfort for the inhabitants.


2018 ◽  
Vol 35 ◽  
pp. 1-12
Author(s):  
Cynthia Diniz Souza ◽  
Vandick S. Batista ◽  
Nidia Noemi Fabré

Seasonal ecological effects caused by temperature and photoperiod are typically considered minimal in the tropics. Nevertheless, annual climate cycles may still influence the distribution and abundance of tropical species. Here, we investigate whether seasonal patterns of precipitation and wind speed influence the structure of coastal fish assemblages and fishing yields in northeast Brazil. Research trips were conducted during the rainy and dry seasons using commercial boats and gear to sample the fish community. Diversity was analyzed using abundance Whittaker curves, diversity profiles and the Shannon index. Principal Component Analysis (PCA) was used to analyze associations between the abundance of species and various environmental variables related to seasonality. A total of 2,373 fish were collected, representing 73 species from 34 families – 20 of which were classified as both frequent and abundant. Species richness was greater and more equitable during the rainy season than the dry season – driven by changes in the precipitation rather than to wind speed. Species diversity profiles were slightly greater during the rainy season than the dry season, but this difference was not statistically significant. Using PCA was identified three groups of species: the first associated with wind speed, the second with precipitation, and the third with a wide range of sampling environments. This latter group was the largest and most ecologically heterogeneous. We conclude that tropical coastal fish assemblages are largely influenced by local variables, and seasonally mediated by annual changes related to precipitation intensity and wind speed, which in turn influences fishery yields.


2016 ◽  
Author(s):  
Jacques D Charlwood

Background: With the possible implications of global warming, the effect of temperature on the dynamics of malaria vectors in Africa has become a subject of increasing interest. Information from the field is, however, relatively sparse. We describe the effect of ambient temperature over a five-year period on the dynamics of An. funestus and An. gambiae s.l., collected from a single village in southern Mozambique where temperatures varied from a night-time minimum of 6oC in the cool season to a daytime maximum of 35oC in the hot season. Results: Mean daily air temperatures varied from 34o C to 20oC and soil temperatures varied from 26 o C to 12 o C. Diurnal variation was greatest in the cooler months of the year and were greater in air temperatures than soil temperatures. During the study 301, 705 female An. funestus were collected in 6043 light-trap collections, 161, 466 in 7397 exit collections and 16, 995 in 1315 resting collections. The equivalent numbers for An. gambiae s.l. are 72, 475 in light-traps, 33, 868 in exit collections and 5, 333 from indoor resting collections. Numbers of mosquito were greatest in the warmer months. Numbers of An. gambiae s.l. went through a one hundredfold change (from a mean of 0.14 mosquitoes a night to 14) whereas numbers of An. funestus merely doubled (from a mean of 20 to 40 a night). The highest environmental correlations and mosquito numbers were between mean air temperature (r2 = 0.52 for An. funestus and 0.77 for An. gambiae s.l.). Numbers of mosquito collected were not related to rainfall with lags of up to four weeks. Numbers of both gravid and unfed An. gambiae complex females in exit collections continued to increase at all temperatures recorded but gravid females of An. funestus decreased at temperatures above 28oC. Overall the numbers of gravid and unfed An. funestus collected in exit collections were not correlated (p = 0.07). For an unknown reason the number of An. gambiae s.l. fell below monitoring thresholds during the study. Conclusions: Mean air temperature was the most important environmental parameter affecting both vectors in this part of Mozambique. Numbers of An. gambiae s.l. increased at all temperatures recorded whilst An. funestus appeared to be adversely affected by temperatures of 28oC and above. These differences may influence the distribution of the vectors as the planet warms.


Sign in / Sign up

Export Citation Format

Share Document