scholarly journals Vulnerability of Street Trees in Upper Midwest Cities to Climate Change

2021 ◽  
Vol 9 ◽  
Author(s):  
Leslie A. Brandt ◽  
Gary R. Johnson ◽  
Eric A. North ◽  
Jack Faje ◽  
Annamarie Rutledge

Urban trees play an important role in helping cities adapt to climate change, but also are vulnerable to changes in climate themselves. We developed an approach for assessing vulnerability of urban tree species and cultivars commonly planted in cities in the United States Upper Midwest to current and projected climate change through the end of the 21st century. One hundred seventy-eight tree species were evaluated for their adaptive capacity to a suite of current and future-projected climate and urban stressors using a weighted scoring system based on an extensive literature review. These scores were then evaluated and adjusted by leading experts in arboriculture in the region. Each species or cultivar’s USDA Hardiness Zone and American Horticultural Society Heat Zone tolerance was compared to current and future heat and hardiness zones for 14 municipalities across Michigan, Wisconsin, and Minnesota using statistically downscaled climate data. Species adaptive capacity and zone tolerance was combined to assign each species one of five vulnerability categories for each location. We determined the number of species and trees in each category based on the most recent municipal street tree data for each location. Under a scenario of less climate change (RCP 4.5), fewer than 2% of trees in each municipality were considered highly vulnerable across all 14 municipalities. Under a scenario of greater change (RCP 8.5), upward of 25% of trees were considered highly vulnerable in some locations. However, the number of vulnerable trees varied greatly by location, primarily because of differences in projected summer high temperatures rather than differences in species composition. Urban foresters can use this information as a complement to other more traditional considerations used when selecting trees for planting.

2018 ◽  
Vol 4 (12) ◽  
pp. eaat4343 ◽  
Author(s):  
Ariel Ortiz-Bobea ◽  
Erwin Knippenberg ◽  
Robert G. Chambers

A pressing question for climate change adaptation is whether ongoing transformations of the agricultural sector affect its ability to cope with climatic variations. We examine this question in the United States, where major increases in productivity have fueled most of agricultural production growth over the past half-century. To quantify the evolving climate sensitivity of the sector and identify its sources, we combine state-level measures of agricultural productivity with detailed climate data for 1960–2004. We find that agriculture is growing more sensitive to climate in Midwestern states for two distinct but compounding reasons: a rising climatic sensitivity of nonirrigated cereal and oilseed crops and a growing specialization in crop production. In contrast, other regions specialize in less climate-sensitive production such as irrigated specialty crops or livestock. Results suggest that reducing vulnerability to climate change should consider the role of policies in inducing regional specialization.


Author(s):  
Nicholas Watts

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. There are three important linkages to explore between climate change and health in terms of potential policy responses. The first of these linkages relates to the impacts on health resulting from climate change. In 2009, The Lancet described climate change as “the greatest global health threat of the 21st century,” referencing the direct and indirect effects it is having on public health. While a number of impacts are directly observable (i.e., an increased frequency and severity of many extreme weather events), others are more indirect, being mediated through environmental and social systems (i.e., the health complications associated with mass migration or violent conflict). Further, it is well understood that resilience and adaptive capacity play an important role in reducing these impacts—often leaving low-income communities worse off than most. The second important linkage between climate change and health relates to the co-benefits of mitigation and adaptation. Policy responses to climate change will inevitably come with both intended and unforseen externalities and “side-effects” (both positive and negative). Traditional public health tools, such as health impact assessment, can be valuable in identifying and understanding these co-benefits to better guide policy. Indeed, many of the mitigation solutions yield substantial benefits for public health: switching away from coal-fired power plants as an energy choice improves cardiovascular and respiratory health; designing cities which are cycle- and pedestrian-friendly increases rates of physical activity (helping to tackle obesity, diabetes, many cancers, and heart disease) while also reducing greenhouse gas emissions from vehicles. Finally, the health system itself has an important role in responding directly to climate change. This is frequently understood in terms of a health facility’s ability to withstand and respond to the impacts of climate change, and to the adaptive capacity of the health system itself. But there is also a role for the health system to play in reducing its own emissions. In countries like the United Kingdom and the United States, the formal health system is responsible for as much as 3–8% of national emissions, and has subsequently made commitments to reduce its environmental impact. A 2013 review of the UK National Health Service’s carbon footprint indicated that as much as 60% of this came from procurement, 17% from building energy, and 13% from health system–related transport. A number of the solutions available are often designed in a way that improves patient outcomes and satisfaction, while reducing the costs of healthcare. In low- and middle-income countries, the focus is placed on ensuring access to reliable electricity, a task well suited to decentralized micro-grids with sustainable power generation. Academic literature on the topic of health and climate change has expanded rapidly in recent years and includes the 2009 and 2015 Lancet Commissions on health and climate change, the 2010 series on the health co-benefits of mitigation, and the 2014 Intergovernmental Panel on Climate Change’s 5th Assessment Report.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
James Rising ◽  
Naresh Devineni

AbstractA key strategy for agriculture to adapt to climate change is by switching crops and relocating crop production. We develop an approach to estimate the economic potential of crop reallocation using a Bayesian hierarchical model of yields. We apply the model to six crops in the United States, and show that it outperforms traditional empirical models under cross-validation. The fitted model parameters provide evidence of considerable existing climate adaptation across counties. If crop locations are held constant in the future, total agriculture profits for the six crops will drop by 31% for the temperature patterns of 2070 under RCP 8.5. When crop lands are reallocated to avoid yield decreases and take advantage of yield increases, half of these losses are avoided (16% loss), but 57% of counties are allocated crops different from those currently planted. Our results provide a framework for identifying crop adaptation opportunities, but suggest limits to their potential.


2016 ◽  
Vol 24 (2) ◽  
pp. 164-186 ◽  
Author(s):  
I. Aubin ◽  
A.D. Munson ◽  
F. Cardou ◽  
P.J. Burton ◽  
N. Isabel ◽  
...  

The integration of functional traits into vulnerability assessments is a promising approach to quantitatively capture differences in species sensitivity and adaptive capacity to climate change, allowing the refinement of tree species distribution models. In response to a clear need to identify traits that are responsive to climate change and applicable in a management context, we review the state of knowledge of the main mechanisms, and their associated traits, that underpin the ability of boreal and temperate tree species to persist and (or) shift their distribution in a changing climate. We aimed to determine whether current knowledge is sufficiently mature and available to be used effectively in vulnerability assessments. Marshalling recent conceptual advances and assessing data availability, our ultimate objective is to guide modellers and practitioners in finding and selecting sets of traits that can be used to capture differences in species’ ability to persist and migrate. While the physiological mechanisms that determine sensitivity to climate change are relatively well understood (e.g., drought-induced cavitation), many associated traits have not been systematically documented for North American trees and differences in methodology preclude their widespread integration into vulnerability assessments (e.g., xylem recovery capacity). In contrast, traits traditionally associated with the ability to migrate and withstand fire are generally well documented, but new key traits are emerging in the context of climate change that have not been as well characterized (e.g., age of optimum seed production). More generally, lack of knowledge surrounding the extent and patterns in intraspecific trait variation, as well as co-variation and interaction among traits, limit our ability to use this approach to assess tree adaptive capacity. We conclude by outlining research needs and potential strategies for the development of trait-based knowledge applicable in large-scale modelling efforts, sketching out important aspects of trait data organization that should be part of a coordinated effort by the forest science community.


Author(s):  
Selam Kidanemariam ◽  
Haddush Goitom ◽  
Yigzaw Desta

Abstract This research assesses the streamflow response of Werie River to climate change. Baseline (1980–2009) climate data of precipitation, maximum and minimum temperature were analyzed using delta based statistical downscaling approach in R software packages to predict future 90 years (2010–2099) periods under two emission scenarios of Representative Concentration Pathways (RCP) 4.5 and RCP 8.5, indicating medium and extremely high emission scenarios respectively. Generated future climate variables indicate Werie will experience a significant increase in precipitation, and maximum and minimum air temperature for both RCPs. Further, Water and Energy Transfer between Soil, Plants, and Atmosphere (WetSpa) was applied to assess the water balance of Werie River. The WetSpa model reproduced the streamflow well with performance statistics values of R2 = 0.84 and 0.85, Nash–Sutcliffe efficiency = 0.72 and 0.72, and model bias = –0.14 and –0.15 for the calibration data set of 1999–2010 and validation data of 2011–2014 respectively. Finally, by taking the downscaled future climate variables as input, WetSpa future prediction shows that there will an increase in the Werie catchment mean annual streamflow up to 29.6% for RCP 4.5 and 35.6% for RCP 8.5 compared to the baseline period.


Author(s):  
Laura Silici ◽  
Andy Rowe ◽  
Nanthikesan Suppiramaniam ◽  
Jeremy Knox

Abstract Increasing climate uncertainty coupled with more frequent extreme events poses a serious threat to the sustainability of smallholder communities dependent on agriculture for their livelihoods. Whilst there is extensive literature on adaptation options, there is a pressing need to understand what interventions have been successful in building smallholder’s adaptive capacity, and how these have been transferred (nationally and internationally) through learning outcomes. The aim of this rapid evidence assessment was to assess the extent to which learning outcomes have supported initiatives to mainstream adaptation, focussing on three key areas, (i) scaling up climate sensitive adaptive interventions, (ii) the role of knowledge management to promote effective adaptive solutions, and (iii) human-ecosystem interactions in climate change adaptation. A protocol for the review was defined, from which 806 sources of evidence were retrieved. After screening for relevance using inclusion criteria, 91 were selected and the salient evidence extracted and synthesised. Access to knowledge remains one of the most important determinants of smallholders’ decisions to respond to climate risk and a critical element in building adaptive capacity. The way knowledge is generated and exchanged is also directly relevant to securing effective scaling-up pathways. Learning platforms through participatory action research, farmer field schools and community-based initiatives were found to be particularly effective. However, knowledge based on local practices alone may be insufficient to prompt transformative action. Bridging local and external knowledge is critical because it widens the smallholders’ knowledge base and encourages ‘proactive’ adaptation alongside more typical ‘reactive’ strategies. The contribution of evidence reviews to provide new insights to inform decision-making and investment in international development and the implications for advocating climate-sensitive policies at national and global levels are discussed.


2009 ◽  
Vol 2 (3) ◽  
pp. 200-215 ◽  
Author(s):  
Becky K. Kerns ◽  
Bridgett J. Naylor ◽  
Michelle Buonopane ◽  
Catherine G. Parks ◽  
Brendan Rogers

AbstractTamarisk species are shrubs or small trees considered by some to be among the most aggressively invasive and potentially detrimental exotic plants in the United States. Although extensively studied in the southern and interior west, northwestern (Oregon, Washington, and Idaho) distribution and habitat information for tamarisk is either limited or lacking. We obtained distribution data for the northwest, developed a habitat suitability map, and projected changes in habitat due to climate change in a smaller case study area using downscaled climate data. Results show extensive populations of tamarisk east of the Cascade Mountains. Despite the perceived novelty of tamarisk in the region, naturalized populations were present by the 1920s. Major population centers are limited to the warmest and driest environments in the central Snake River Plain, Columbia Plateau, and Northern Basin and Range. Habitat suitability model results indicate that 21% of the region supports suitable tamarisk habitat. Less than 1% of these areas are occupied by tamarisk; the remainder is highly vulnerable to invasion. Although considerable uncertainty exists regarding future climate change, we project a 2- to 10-fold increase in highly suitable tamarisk habitat by the end of the century. Our habitat suitability maps can be used in “what if” exercises as part of planning, detection, restoration, management, and eradication purposes.


2017 ◽  
Vol 9 (4) ◽  
pp. 801-814 ◽  
Author(s):  
Cadeyrn J. Gaskin ◽  
Davina Taylor ◽  
Susan Kinnear ◽  
Julie Mann ◽  
Wendy Hillman ◽  
...  

Abstract People with disability experience multidimensional inequalities, which heighten their vulnerability to climate change. An understanding of the vulnerability and adaptive capacity of people with disability can be gained through considering how they have fared during the types of events associated with climate change, such as droughts, floods, heat waves, hurricanes, and wildfires. A systematic review was conducted to identify factors associated with climate change vulnerability and adaptive capacity of people with disability. Papers were sourced from 12 electronic databases, the Google search engine, the websites of 21 organizations, and the reference lists of included papers; 34 papers (relating to 28 studies) met the selection criteria. Most studies were located in the United States, and almost half were focused on hurricane events. Factors contributing to vulnerability included personal factors (e.g., female gender, uncoupled or living alone, nonwhite ethnicity, and low income), environmental factors (commonly, limited practical support from government agencies and disability organizations), bodily impairments (cognitive impairments, hearing impairments, progression of impairments, relapse/exacerbation of symptoms, and thermoregulation difficulties), and activity limitations and participation restrictions (limited preparedness, difficulties with evacuation, and difficulties reassembling individual accommodations and repairing or replacing adaptive equipment). Factors relating to their adaptive capacity included personal factors (e.g., formal education), environmental factors (practical support from mainstream organizations, disability organizations, family, and friends), and activities and participation (emergency planning, keeping an emergency pack, and seeking information). People with disability are vulnerable to climate change largely due to inequalities and their exclusion from adaptation and mitigation efforts.


Forests ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 37
Author(s):  
Sanghyuk Lee ◽  
Huicheul Jung ◽  
Jaeyong Choi

Climate change is recognized as a major threat to global biodiversity and has already caused extensive regional extinction. In particular danger are the plant habitats in subalpine zones, which are more vulnerable to climate change. Evergreen coniferous trees in South Korean subalpine zones are currently designated as a species that need special care given their conservation value, but the reason for their decline and its seriousness remains unclear. This research estimates the potential land suitability (LS) of the subalpine zones in South Korea for six coniferous species vulnerable to climate change in the current time (1970–2000) and two future periods, the 2050s (2041–2060) and the 2070s (2061–2080). We analyze the ensemble-averaged loss of currently suitable habitats in the future, using nine species distribution models (SDMs). Korean arborvitae (Thuja koraiensis) and Khingan fir (Abies nephrolepis) are two species expected to experience significant habitat losses in 2050 (−59.5% under Representative Concentration Pathway (RCP) 4.5 to −65.9% under RCP 8.5 and −56.3% under RCP 4.5 to −57.7% under RCP 8.5, respectively). High extinction risks are estimated for these species, due to the difficulty of finding other suitable habitats with high LS. The current habitat of Korean fir (Abies koreana), listed as a threatened species on the International Union for Conservation of Nature (IUCN) Red List, is expected to decrease by −23.9% (RCP 4.5) to −28.4% (RCP 8.5) and −36.5% (RCP 4.5) to −36.7% (RCP 8.5) in the 2050s and 2070s, respectively. Still, its suitable habitats are also estimated to expand geographically toward the northern part of the Baekdudaegan mountain range. In the context of forest management and adaptation planning, the multi-model ensemble approach to mapping future shifts in the range of subalpine tree species under climate change provides robust information about the potential distribution of threatened and endanger


2020 ◽  
Vol 12 (11) ◽  
pp. 275
Author(s):  
Charles Bwalya Chisanga ◽  
Elijah Phiri ◽  
Vernon R. N. Chinene

The impact of climate change on crop growth and yield can be predicted using crop simulation models. A study was conducted to assess the reliability and uncertainty of simulated maize yield for the near future in 2050s at Mount Makulu (latitude = 15.550o S, longitude = 28.250o E, altitude = 1213 m), Zambia. The Long Ashton Research Station Weather Generator (LARS-WG) was used to generate baseline (1980-2010) and future (2040-2069) climate scenarios for two Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Results showed that mean temperature would increase by 2.09oC (RCP 4.5) and 2.56oC (RCP 8.5) relative to the baseline (1980-2010). However, rainfall would reduce by 9.84% (RCP 4.5) and 11.82% (RCP 8.5). The CERES-Maize model simulated results for rainfed maize growth showed that the simulated parameters; days after planting (DAP), biomass and grain yield would reduce from 2040-2069/1980-2010 under both RCP4.5 and RCP8.5 scenarios. The LARS-WG was successfully for our location can be used in generating climate scenarios for impact studies to inform policy, stakeholders and decision makers. Adaptation strategies to mitigate for the potential impact of climate change includes several sowing dates, cultivar selection that are efficient at using nitrogen fertilizer and planting new cultivars breeds that will thrive under low root soil water content and higher temperatures.


Sign in / Sign up

Export Citation Format

Share Document