scholarly journals A Novel Computational Framework to Predict Disease-Related Copy Number Variations by Integrating Multiple Data Sources

2021 ◽  
Vol 12 ◽  
Author(s):  
Lin Yuan ◽  
Tao Sun ◽  
Jing Zhao ◽  
Zhen Shen

Copy number variation (CNV) may contribute to the development of complex diseases. However, due to the complex mechanism of path association and the lack of sufficient samples, understanding the relationship between CNV and cancer remains a major challenge. The unprecedented abundance of CNV, gene, and disease label data provides us with an opportunity to design a new machine learning framework to predict potential disease-related CNVs. In this paper, we developed a novel machine learning approach, namely, IHI-BMLLR (Integrating Heterogeneous Information sources with Biweight Mid-correlation and L1-regularized Logistic Regression under stability selection), to predict the CNV-disease path associations by using a data set containing CNV, disease state labels, and gene data. CNVs, genes, and diseases are connected through edges and then constitute a biological association network. To construct a biological network, we first used a self-adaptive biweight mid-correlation (BM) formula to calculate correlation coefficients between CNVs and genes. Then, we used logistic regression with L1 penalty (LLR) function to detect genes related to disease. We added stability selection strategy, which can effectively reduce false positives, when using self-adaptive BM and LLR. Finally, a weighted path search algorithm was applied to find top D path associations and important CNVs. The experimental results on both simulation and prostate cancer data show that IHI-BMLLR is significantly better than two state-of-the-art CNV detection methods (i.e., CCRET and DPtest) under false-positive control. Furthermore, we applied IHI-BMLLR to prostate cancer data and found significant path associations. Three new cancer-related genes were discovered in the paths, and these genes need to be verified by biological research in the future.

2021 ◽  
Author(s):  
Lin Yuan ◽  
Tao Sun ◽  
Jing Zhao ◽  
Zhen Shen

Abstract Background: Copy number variation (CNV) may contribute to development of complex diseases. However, due to the complex mechanism of path association and the lack of sufficient samples, understanding the relationship between CNV and cancer remains a major challenge. The unprecedented abundance of CNV, gene and disease label data provide us with an opportunity to design a new machine learning framework to predict potential disease related CNVs.Results: In this paper, we developed a novel machine learning approach, namely IHI BMLLR (Integrating Heterogeneous Information sources with Biweight Mid correlation and L1 regularized Logistic Regression under stability selection), to predict the CNV disease path associations by using a data set containing CNV, disease state labels and gene data. CNVs, genes, and diseases are connected through edges, and then constitute a biological association network. To construct a biological network, we first used a self adaptive biweight mid correlation (BM) formula to calculate correlation coefficients between CNVs and genes. Then, we used logistic regression with L1 penalty (LLR) function to detect genes related to disease. We added stability selection strategy, which can effectively reduce false positives, when using self adaptive BM and LLR. Finally, a weighted path search algorithm was applied to find top D path associations and important CNVs.Conclusions: Compared with state of the art methods, IHI BMLLR discovers CNVs disease path associations by integrating analysis of CNV, gene expression and disease label data combined with stability selection strategy and weighted path search algorithm, thereby mining more information in the data sets, and improving the accuracy of obtained CNVs. The experimental results on both simulation and prostate cancer data show that IHI BMLLR is significantly better than two state of the art CNV detection methods (i.e., CCRET and DPtest) under false positive control. Furthermore, we applied IHI BMLLR to prostate cancer data and found significant path associations. Three new cancer related genes were discovered in the paths and these genes need to be verified by biological research in the future.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 22 ◽  
Author(s):  
Jabeen Sultana ◽  
Abdul Khader Jilani ◽  
. .

The primary identification and prediction of type of the cancer ought to develop a compulsion in cancer study, in order to assist and supervise the patients. The significance of classifying cancer patients into high or low risk clusters needs commanded many investigation teams, from the biomedical and the bioinformatics area, to learn and analyze the application of machine learning (ML) approaches. Logistic Regression method and Multi-classifiers has been proposed to predict the breast cancer. To produce deep predictions in a new environment on the breast cancer data. This paper explores the different data mining approaches using Classification which can be applied on Breast Cancer data to build deep predictions. Besides this, this study predicts the best Model yielding high performance by evaluating dataset on various classifiers. In this paper Breast cancer dataset is collected from the UCI machine learning repository has 569 instances with 31 attributes. Data set is pre-processed first and fed to various classifiers like Simple Logistic-regression method, IBK, K-star, Multi-Layer Perceptron (MLP), Random Forest, Decision table, Decision Trees (DT), PART, Multi-Class Classifiers and REP Tree.  10-fold cross validation is applied, training is performed so that new Models are developed and tested. The results obtained are evaluated on various parameters like Accuracy, RMSE Error, Sensitivity, Specificity, F-Measure, ROC Curve Area and Kappa statistic and time taken to build the model. Result analysis reveals that among all the classifiers Simple Logistic Regression yields the deep predictions and obtains the best model yielding high and accurate results followed by other methods IBK: Nearest Neighbor Classifier, K-Star: instance-based Classifier, MLP- Neural network. Other Methods obtained less accuracy in comparison with Logistic regression method.  


2021 ◽  
Vol 11 (12) ◽  
pp. 2996-3009
Author(s):  
Sundarambal Balaraman ◽  
Ramesh Ramamoorthy ◽  
Raja Krishnamoorthi

Machine learning is a current topic of interest in research and industry, with the implementation of novel strategies all the time. The main purpose of this research activity is to determine the efficiency of machine learning techniques in the detection research of breast cancer. The incidence and mortality of breast cancer in women are increasing day by day. Worldwide, researchers have worked hard to help clinicians provide the best model for detecting diagnosis and breast cancer. In this work, learning UCI machine Wisconsin breast cancer data from a set of databases, model, and analyze the performance of existing work use, compared to the same data set. The dataset is analyzed, and the revamped dataset is constructed by eliminating redundant features and appending new features essential for prediction. Logistic regression, K nearest neighbors (KNN), support vector machine (SVM), decision trees, random forest, XGBoost, using a machine learning algorithm, such as re-organized data set of artificial neural network AdaBoost, 8 one of prediction build the model application (ANN). Standard to analyze the accuracy rate. In the experiment, these classifications have been shown to work for breast cancer with >97% accuracy. Logistic regression, XGBoost and Adaboost, stand on top with 99.28 percent accuracy. The experiment also, the balanced data set of removal outliers and balance, shows that have a significant impact on the model’s prediction performance.


Author(s):  
Dhilsath Fathima.M ◽  
S. Justin Samuel ◽  
R. Hari Haran

Aim: This proposed work is used to develop an improved and robust machine learning model for predicting Myocardial Infarction (MI) could have substantial clinical impact. Objectives: This paper explains how to build machine learning based computer-aided analysis system for an early and accurate prediction of Myocardial Infarction (MI) which utilizes framingham heart study dataset for validation and evaluation. This proposed computer-aided analysis model will support medical professionals to predict myocardial infarction proficiently. Methods: The proposed model utilize the mean imputation to remove the missing values from the data set, then applied principal component analysis to extract the optimal features from the data set to enhance the performance of the classifiers. After PCA, the reduced features are partitioned into training dataset and testing dataset where 70% of the training dataset are given as an input to the four well-liked classifiers as support vector machine, k-nearest neighbor, logistic regression and decision tree to train the classifiers and 30% of test dataset is used to evaluate an output of machine learning model using performance metrics as confusion matrix, classifier accuracy, precision, sensitivity, F1-score, AUC-ROC curve. Results: Output of the classifiers are evaluated using performance measures and we observed that logistic regression provides high accuracy than K-NN, SVM, decision tree classifiers and PCA performs sound as a good feature extraction method to enhance the performance of proposed model. From these analyses, we conclude that logistic regression having good mean accuracy level and standard deviation accuracy compared with the other three algorithms. AUC-ROC curve of the proposed classifiers is analyzed from the output figure.4, figure.5 that logistic regression exhibits good AUC-ROC score, i.e. around 70% compared to k-NN and decision tree algorithm. Conclusion: From the result analysis, we infer that this proposed machine learning model will act as an optimal decision making system to predict the acute myocardial infarction at an early stage than an existing machine learning based prediction models and it is capable to predict the presence of an acute myocardial Infarction with human using the heart disease risk factors, in order to decide when to start lifestyle modification and medical treatment to prevent the heart disease.


2019 ◽  
Vol 9 (6) ◽  
pp. 1128 ◽  
Author(s):  
Yundong Li ◽  
Wei Hu ◽  
Han Dong ◽  
Xueyan Zhang

Using aerial cameras, satellite remote sensing or unmanned aerial vehicles (UAV) equipped with cameras can facilitate search and rescue tasks after disasters. The traditional manual interpretation of huge aerial images is inefficient and could be replaced by machine learning-based methods combined with image processing techniques. Given the development of machine learning, researchers find that convolutional neural networks can effectively extract features from images. Some target detection methods based on deep learning, such as the single-shot multibox detector (SSD) algorithm, can achieve better results than traditional methods. However, the impressive performance of machine learning-based methods results from the numerous labeled samples. Given the complexity of post-disaster scenarios, obtaining many samples in the aftermath of disasters is difficult. To address this issue, a damaged building assessment method using SSD with pretraining and data augmentation is proposed in the current study and highlights the following aspects. (1) Objects can be detected and classified into undamaged buildings, damaged buildings, and ruins. (2) A convolution auto-encoder (CAE) that consists of VGG16 is constructed and trained using unlabeled post-disaster images. As a transfer learning strategy, the weights of the SSD model are initialized using the weights of the CAE counterpart. (3) Data augmentation strategies, such as image mirroring, rotation, Gaussian blur, and Gaussian noise processing, are utilized to augment the training data set. As a case study, aerial images of Hurricane Sandy in 2012 were maximized to validate the proposed method’s effectiveness. Experiments show that the pretraining strategy can improve of 10% in terms of overall accuracy compared with the SSD trained from scratch. These experiments also demonstrate that using data augmentation strategies can improve mAP and mF1 by 72% and 20%, respectively. Finally, the experiment is further verified by another dataset of Hurricane Irma, and it is concluded that the paper method is feasible.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Martine De Cock ◽  
Rafael Dowsley ◽  
Anderson C. A. Nascimento ◽  
Davis Railsback ◽  
Jianwei Shen ◽  
...  

Abstract Background In biomedical applications, valuable data is often split between owners who cannot openly share the data because of privacy regulations and concerns. Training machine learning models on the joint data without violating privacy is a major technology challenge that can be addressed by combining techniques from machine learning and cryptography. When collaboratively training machine learning models with the cryptographic technique named secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computational cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimizations are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be tailored to the kind of data and Machine Learning problem at hand. Methods Our setup involves secure two-party computation protocols, along with a trusted initializer that distributes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corresponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering optimizations to improve the performance. Results For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications; the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis competition. Conclusions In this paper, we present a secure logistic regression training protocol and its implementation, with a new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest existing secure multi-party computation implementation for training logistic regression models on high dimensional genome data distributed across a local area network.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1285
Author(s):  
Mohammed Al-Sarem ◽  
Faisal Saeed ◽  
Zeyad Ghaleb Al-Mekhlafi ◽  
Badiea Abdulkarem Mohammed ◽  
Tawfik Al-Hadhrami ◽  
...  

Security attacks on legitimate websites to steal users’ information, known as phishing attacks, have been increasing. This kind of attack does not just affect individuals’ or organisations’ websites. Although several detection methods for phishing websites have been proposed using machine learning, deep learning, and other approaches, their detection accuracy still needs to be enhanced. This paper proposes an optimized stacking ensemble method for phishing website detection. The optimisation was carried out using a genetic algorithm (GA) to tune the parameters of several ensemble machine learning methods, including random forests, AdaBoost, XGBoost, Bagging, GradientBoost, and LightGBM. The optimized classifiers were then ranked, and the best three models were chosen as base classifiers of a stacking ensemble method. The experiments were conducted on three phishing website datasets that consisted of both phishing websites and legitimate websites—the Phishing Websites Data Set from UCI (Dataset 1); Phishing Dataset for Machine Learning from Mendeley (Dataset 2, and Datasets for Phishing Websites Detection from Mendeley (Dataset 3). The experimental results showed an improvement using the optimized stacking ensemble method, where the detection accuracy reached 97.16%, 98.58%, and 97.39% for Dataset 1, Dataset 2, and Dataset 3, respectively.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David E. Booth ◽  
Venugopal Gopalakrishna-Remani ◽  
Matthew L. Cooper ◽  
Fiona R. Green ◽  
Margaret P. Rayman

AbstractWe begin by arguing that the often used algorithm for the discovery and use of disease risk factors, stepwise logistic regression, is unstable. We then argue that there are other algorithms available that are much more stable and reliable (e.g. the lasso and gradient boosting). We then propose a protocol for the discovery and use of risk factors using lasso or boosting variable selection. We then illustrate the use of the protocol with a set of prostate cancer data and show that it recovers known risk factors. Finally, we use the protocol to identify new and important SNP based risk factors for prostate cancer and further seek evidence for or against the hypothesis of an anticancer function for Selenium in prostate cancer. We find that the anticancer effect may depend on the SNP-SNP interaction and, in particular, which alleles are present.


2020 ◽  
Vol 44 (1) ◽  
pp. 231-269
Author(s):  
Rong Chen

Abstract Plural marking reaches most corners of languages. When a noun occurs with another linguistic element, which is called associate in this paper, plural marking on the two-component structure has four logically possible patterns: doubly unmarked, noun-marked, associate-marked and doubly marked. These four patterns do not distribute homogeneously in the world’s languages, because they are motivated by two competing motivations iconicity and economy. Some patterns are preferred over others, and this preference is consistently found in languages across the world. In other words, there exists a universal distribution of the four plural marking patterns. Furthermore, holding the view that plural marking on associates expresses plurality of nouns, I propose a hypothetical universal which uses the number of pluralized associates to predict plural marking on nouns. A data set collected from a sample of 100 languages is used to test the hypothetical universal, by employing the machine learning algorithm logistic regression.


Sign in / Sign up

Export Citation Format

Share Document