scholarly journals Myeloid-Derived Suppressor Cells Hinder the Anti-Cancer Activity of Immune Checkpoint Inhibitors

2018 ◽  
Vol 9 ◽  
Author(s):  
Rebekka Weber ◽  
Viktor Fleming ◽  
Xiaoying Hu ◽  
Vasyl Nagibin ◽  
Christopher Groth ◽  
...  
2021 ◽  
Vol 10 (9) ◽  
pp. 1919
Author(s):  
Alejandro Olivares-Hernández ◽  
Luis Figuero-Pérez ◽  
Eduardo Terán-Brage ◽  
Álvaro López-Gutiérrez ◽  
Álvaro Tamayo Velasco ◽  
...  

Myeloid-derived suppressor cells (MDSCs) are a set of immature myeloid lineage cells that include macrophages, granulocytes, and dendritic cell precursors. This subpopulation has been described in relation to the tumour processes at different levels, including resistance to immunotherapy, such as immune checkpoint inhibitors (ICIs). Currently, multiple studies at the preclinical and clinical levels seek to use this cell population for the treatment of different haematological neoplasms, together with ICIs. This review addresses the different points in ongoing studies of MDSCs and ICIs in haematological malignancies and their future significance in routine clinical practice.


2019 ◽  
Vol 26 (17) ◽  
pp. 3009-3025 ◽  
Author(s):  
Bin Li ◽  
Ho Lam Chan ◽  
Pingping Chen

Cancer is one of the most deadly diseases in the modern world. The last decade has witnessed dramatic advances in cancer treatment through immunotherapy. One extremely promising means to achieve anti-cancer immunity is to block the immune checkpoint pathways – mechanisms adopted by cancer cells to disguise themselves as regular components of the human body. Many review articles have described a variety of agents that are currently under extensive clinical evaluation. However, while checkpoint blockade is universally effective against a broad spectrum of cancer types and is mostly unrestricted by the mutation status of certain genes, only a minority of patients achieve a complete response. In this review, we summarize the basic principles of immune checkpoint inhibitors in both antibody and smallmolecule forms and also discuss potential mechanisms of resistance, which may shed light on further investigation to achieve higher clinical efficacy for these inhibitors.


2021 ◽  
Vol 2 (4) ◽  
pp. 5-12
Author(s):  
Mirzagaleb Tillyashaykhov ◽  
◽  
Elena Boyko ◽  
Shakhnoza Jumaniyazova

The review is focused on studying the immunosuppressive mechanisms acting in the microenvironment of renal cell carcinoma tumors. The report contains a collection of basic literature materials on the study of tumor growth factors that boost tumor cell proliferation and metastasis. The tumor microenvironment (TME) limits the immune surveillance of tumor-associated antigens and the effectiveness of immune checkpoint inhibitors. Although renal cell carcinoma is one of several tumor types sensitive to immune checkpoint inhibitors, the efficacy of these agents is likely to be limited by different tumor-infiltrating myeloid cells of bone marrow that make up the TME. Several strategies aimed at eliminating the onset of these cells in tumor tissue or neutralizing their immunosuppressive function have shown encouraging results in animal tumor models and clinical trials.Keywords: cytotoxic T lymphocytes (CTL), immune checkpoint inhibitor (ICI), tumor microenvironment (MEV), myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), renal cell carcinoma (RCC), tumor-associated macrophages (TAM), vascular endothelial growth factor (VEGF)


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6366
Author(s):  
Joosje C. Baltussen ◽  
Marij J. P. Welters ◽  
Elizabeth M. E. Verdegaal ◽  
Ellen Kapiteijn ◽  
Anne M. R. Schrader ◽  
...  

Immune checkpoint inhibitors (ICIs) have strongly improved the survival of melanoma patients. However, as durable response to ICIs are only seen in a minority, there is an unmet need to identify biomarkers that predict response. Therefore, we provide a systematic review that evaluates all biomarkers studied in association with outcomes of melanoma patients receiving ICIs. We searched Pubmed, COCHRANE Library, Embase, Emcare, and Web of Science for relevant articles that were published before June 2020 and studied blood, tumor, or fecal biomarkers that predicted response or survival in melanoma patients treated with ICIs. Of the 2536 identified reports, 177 were included in our review. Risk of bias was high in 40%, moderate in 50% and low in 10% of all studies. Biomarkers that correlated with response were myeloid-derived suppressor cells (MDSCs), circulating tumor cells (CTCs), CD8+ memory T-cells, T-cell receptor (TCR) diversity, tumor-infiltrating lymphocytes (TILs), gene expression profiling (GEP), and a favorable gut microbiome. This review shows that biomarkers for ICIs in melanoma patients are widely studied, but heterogeneity between studies is high, average sample sizes are low, and validation is often lacking. Future studies are needed to further investigate the predictive utility of some promising candidate biomarkers.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e21025-e21025
Author(s):  
Anthony L. Schwartz ◽  
Pulak Nath ◽  
Elizabeth Lessey-Morillon ◽  
Lisa Ridnour ◽  
Michael Allgaeuer ◽  
...  

e21025 Background: Irradiation (IR) combined with chemotherapy is the post-surgical standard of care treatment for melanoma, but metastasis still results in high mortality rates. Immune checkpoint inhibitors such as cytotoxic T-lymphocyte antigen-4 (CTLA4) have proven effective for immunotherapy of melanoma. CTLA-4 is up-regulated post-T cell activation and blockade enhances tumor responses in immunocompetent rodents and humans. Trials suggest that combinations of immune checkpoint inhibitors are more efficacious than single agents, but tumors remain resistant. We are investigating CD47 blockade for the treatment of cancer. CD47 is frequently elevated in cancers and serves as an inhibitory receptor for thrombospondin-1 on immune cells in the tumor stroma. CD47 blockade on CD8 T or tumor cells significantly enhances immune-targeted tumor cell killing post-IR compared to IR alone. Here we explore the potential for antisense CD47 and anti-CTLA4 therapy alone or in combination with IR using a syngeneic mouse melanoma model. Methods: C57BL/6 mice were inoculated with 1x106B16F10 melanoma cells in the hind limb and treated with 10 Gy IR combined with CTLA4 blocking antibody, CD47 translational blocking morpholino, or the combination of CTLA4/CD47 therapies. Granzyme B along with CD4/CD8 T cell infiltration were examined in tumors. Histology was evaluated for CD3 and necrosis. Results: The combination of CD47/CTLA4 with IR significantly increased survival by 25% compared to IR/CTLA4 alone at 50 days. Granzyme B expression was significantly increased in IR mice with CTLA4/CD47 combination, which correlated with infiltration of CD8+ T cells and a concomitant decrease in Gr1+CD11b suppressor cells compared to controls. In non-IR tumors, histology revealed minimal necrosis, while all IR groups showed increased necrosis. Tumor IR in combination with CTLA4 or CD47 increased immune cell infiltration. However, the combination of IR with CTLA4/CD47 showed widespread necrosis. All groups treated with the CD47 exhibited focal hemorrhage, which was more extensive when combined with CTLA4. Conclusions: Results herein suggest IR combined CTLA4/CD47 checkpoint blockade provides a survival benefit by activating a beneficial adaptive immune response.


2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Marina Tusup ◽  
Phil F. Cheng ◽  
Ernesto Picardi ◽  
Austeja Raziunaite ◽  
Reinhard Dummer ◽  
...  

Background: RNA editing is a highly conserved posttranscriptional mechanism that contributes to transcriptome diversity. In mammals, it includes nucleobase deaminations that convert cytidine (C) into uridine (U) and adenosine (A) into inosine (I). Evidence from cancer studies indicates that RNA-editing enzymes promote certain mechanisms of tumorigenesis. On the other hand, recoding editing in mRNA can generate mutations in proteins that can participate in the Major Histocompatibility Complex (MHC) ligandome and can therefore be recognized by the adaptive immune system. Anti-cancer treatment based on the administration of immune checkpoint inhibitors enhance these natural anti-cancer immune responses. Results: Based on RNA-Seq datasets, we evaluated the editome of melanoma cell lines generated from patients pre- and post-immunotherapy with immune checkpoint inhibitors. Our results reveal a differential editing in Arthrobacter luteus (Alu) sequences between samples pre-therapy and relapses during therapy with immune checkpoint inhibitors. Conclusion: These data pave the way towards the development of new diagnostics and therapies targeted to editing that could help in preventing relapses during immunotherapies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Katarina Hradska ◽  
Roman Hajek ◽  
Tomas Jelinek

Immune checkpoint inhibitors (ICIs), especially those targeting the programmed-death 1 (PD-1) receptor and its ligands, have become indispensable agents in solid tumor anti-cancer therapy. Concerning hematological malignancies, only nivolumab and pembrolizumab have been approved for the treatment of relapsed and refractory classical Hodgkin lymphoma and primary mediastinal large B cell lymphoma to date. Nevertheless, clinical research in this field is very active. The mechanism of action of ICIs is based on unblocking the hindered immune system to recognize and eliminate cancer cells, but that also has its costs in the form of ICI-specific immune related adverse events (irAEs), which can affect any organ system and can even be lethal. In this article, we have reviewed all prospective blood cancer clinical trials investigating ICIs (both monotherapy and combination therapy) with available toxicity data with the purpose of determining the incidence of irAEs in this specific setting and to offer a brief insight into their management, as the use of immune checkpoint blockade is not so frequent in hemato-oncology.


Sign in / Sign up

Export Citation Format

Share Document