scholarly journals Cross-Linking Cellular Prion Protein Induces Neuronal Type 2-Like Hypersensitivity

2021 ◽  
Vol 12 ◽  
Author(s):  
Utpal Kumar Adhikari ◽  
Elif Sakiz ◽  
Xian Zhou ◽  
Umma Habiba ◽  
Sachin Kumar ◽  
...  

BackgroundPrevious reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response.MethodsInitially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of mouse primary neurons (MPN), neuroblastoma cells (N2a) and microglia (N11) cell lines lead to a neuronal allergenic response.ResultsIn-Silico studies showed that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for previously reported ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, we identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, we identified 8 neuronal allergenic-related proteins following treatment of N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells when compared with untreated cells. Antibody treatment of MPN or MPN co-cultured with antibody-treated N11 led to identifying 10 and 7 allergenic-related proteins when compared with untreated cells. However, comparison with 3F4 antibody treatment revealed 5 and 4 allergenic-related proteins respectively. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Finally, co-culture of N2a or MPN with N11-treated with anti-PrP antibodies resulted in significant accumulation of NO and IL6 but not TNF-α in the cell culture media supernatant.ConclusionsThis study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal hypersensitivity response and highlights the important role of microglia in triggering an IgG-mediated neuronal hypersensitivity response. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative disorders to derive safe and targeted biotherapeutics.

2020 ◽  
Author(s):  
Utpal Kumar Adhikari ◽  
Elif Sakiz ◽  
Umma Habiba ◽  
Sachin Kumar ◽  
Meena Mikhael ◽  
...  

Abstract Background: Previous reports identified proteins associated with ‘apoptosis’ following cross-linking PrPC with motif-specific anti-PrP antibodies in vivo and in vitro. The molecular mechanisms underlying this IgG-mediated neurotoxicity and the role of the activated proteins in the apoptotic pathways leading to neuronal death has not been properly defined. Previous reports implicated a number of proteins, including apolipoprotein E, cytoplasmic phospholipase A2, prostaglandin and calpain with anti-PrP antibody-mediated ‘apoptosis’, however, these proteins are also known to play an important role in allergy. In this study, we investigated whether cross-linking PrPC with anti-PrP antibodies stimulates a neuronal allergenic response.Methods: Initially, we predicted the allergenicity of the epitope sequences associated with ‘neurotoxic’ anti-PrP antibodies using allergenicity prediction servers. We then investigated whether anti-PrP antibody treatment of neuronal (N2a) and microglia (N11) cell lines leads to a neuronal allergenic response.Results: We found that both tail- and globular-epitopes were allergenic. Specifically, binding regions that contain epitopes for ‘neurotoxic’ antibodies such as ICSM18 (146-159), ICSM35 (91-110), POM 1 (138-147), POM 2 (57-88) and POM 3 (95-100) lead to activation of allergenic related proteins. Following direct application of anti-PrPC antibodies on N2a cells, mass spectrometry analysis identified 4 neuronal allergenic-related proteins when compared with untreated cells. Furthermore, mass spectrometry analysis identified 8 neuronal allergenic-related proteins following cross-linking N11 cells with anti-PrPC antibodies prior to co-culture with N2a cells, when compared with untreated cells. Of importance, we showed that the allergenic effects triggered by the anti-PrP antibodies were more potent when antibody-treated microglia were co-cultured with the neuroblastoma cell line. Furthermore, in both direct and co-culture with antibody-treated microglia, we demonstrate that the allergenic proteome was part of the PrPC-interactome. Conclusions: This study showed for the first time that anti-PrP antibody binding to PrPC triggers a neuronal allergenic response (we termed ‘IgG-Mediated Neuronal Allergenic Toxicity’) and highlights the important role of microglia in triggering IgG-mediated neuronal allergenic toxicity. Moreover, this study provides an important impetus for including allergenic assessment of therapeutic antibodies for neurodegenerative to derive safe and targeted biotherapeutics.


2020 ◽  
Vol 10 (1) ◽  
pp. 78
Author(s):  
April Nettesheim ◽  
Myoung Sup Shim ◽  
Angela Dixon ◽  
Urmimala Raychaudhuri ◽  
Haiyan Gong ◽  
...  

Extracellular matrix (ECM) deposition in the trabecular meshwork (TM) is one of the hallmarks of glaucoma, a group of human diseases and leading cause of permanent blindness. The molecular mechanisms underlying ECM deposition in the glaucomatous TM are not known, but it is presumed to be a consequence of excessive synthesis of ECM components, decreased proteolytic degradation, or both. Targeting ECM deposition might represent a therapeutic approach to restore outflow facility in glaucoma. Previous work conducted in our laboratory identified the lysosomal enzyme cathepsin B (CTSB) to be expressed on the cellular surface and to be secreted into the culture media in trabecular meshwork (TM) cells. Here, we further investigated the role of CTSB on ECM remodeling and outflow physiology in vitro and in CSTBko mice. Our results indicate that CTSB localizes in the caveolae and participates in the pericellular degradation of ECM in TM cells. We also report here a novel role of CTSB in regulating the expression of PAI-1 and TGFβ/Smad signaling in TM cells vitro and in vivo in CTSBko mice. We propose enhancing CTSB activity as a novel therapeutic target to attenuate fibrosis and ECM deposition in the glaucomatous outflow pathway.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Miwako Yamasaki ◽  
Tomonori Takeuchi

Most everyday memories including many episodic-like memories that we may form automatically in the hippocampus (HPC) are forgotten, while some of them are retained for a long time by a memory stabilization process, called initial memory consolidation. Specifically, the retention of everyday memory is enhanced, in humans and animals, when something novel happens shortly before or after the time of encoding. Converging evidence has indicated that dopamine (DA) signaling via D1/D5receptors in HPC is required for persistence of synaptic plasticity and memory, thereby playing an important role in the novelty-associated memory enhancement. In this review paper, we aim to provide an overview of the key findings related to D1/D5receptor-dependent persistence of synaptic plasticity and memory in HPC, especially focusing on the emerging evidence for a role of the locus coeruleus (LC) in DA-dependent memory consolidation. We then refer to candidate brain areas and circuits that might be responsible for detection and transmission of the environmental novelty signal and molecular and anatomical evidence for the LC-DA system. We also discuss molecular mechanisms that might mediate the environmental novelty-associated memory enhancement, including plasticity-related proteins that are involved in initial memory consolidation processes in HPC.


Author(s):  
Vitor de Miranda Ramos ◽  
Alicia J. Kowaltowski ◽  
Pamela A. Kakimoto

Steatosis is the accumulation of neutral lipids in the cytoplasm. In the liver, it is associated with overeating and a sedentary lifestyle, but may also be a result of xenobiotic toxicity and genetics. Non-alcoholic fatty liver disease (NAFLD) defines an array of liver conditions varying from simple steatosis to inflammation and fibrosis. Over the last years, autophagic processes have been shown to be directly associated with the development and progression of these conditions. However, the precise role of autophagy in steatosis development is still unclear. Specifically, autophagy is necessary for the regulation of basic metabolism in hepatocytes, such as glycogenolysis and gluconeogenesis, response to insulin and glucagon signaling, and cellular responses to free amino acid contents. Also, genetic knockout models for autophagy-related proteins suggest a critical relationship between autophagy and hepatic lipid metabolism, but some results are still ambiguous. While autophagy may seem necessary to support lipid oxidation in some contexts, other evidence suggests that autophagic activity can lead to lipid accumulation instead. This structured literature review aims to critically discuss, compare, and organize results over the last 10 years regarding rodent steatosis models that measured several autophagy markers, with genetic and pharmacological interventions that may help elucidate the molecular mechanisms involved.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1971-1971
Author(s):  
Marta Crespo ◽  
Júlia Carabia ◽  
Noelia Purroy ◽  
Cecilia Carpio ◽  
Pau Abrisqueta ◽  
...  

Abstract Aberrant expression of diverse microRNAs (miRNAs) has been related to pathogenesis and clinical outcome in patients with CLL. miR-21 is overexpressed in a wide variety of neoplasms where it participates in oncogenic events such as proliferation, resistance to treatment and metastasis. In CLL, miR-21 expression has been associated to refractoriness to fludarabine and to shorter overall survival. In addition, high expression of ZAP-70 protein in CLL is related to shorter overall survival and higher probability of progression. Several biological mechanisms have been described explaining the adverse prognosis associated with high ZAP-70 expression. In this sense, ZAP-70 protein increases the capability of CLL cells to respond to different survival and migration signals provided by the microenvironment. In a previous work, we found that transfected B-cell lines with a ZAP-70 expressing vector (Calpe at al, Blood 2011) had an increased expression of several molecules, including miR-21. Against this background, we studied the relationship between ZAP-70 protein and miR-21. For this, we firstly analyzed the correlation of ZAP-70 with miR-21 in primary CLL cells from 32 patients. In this series we observed that miR-21 expression analyzed by QRT-PCR was significantly higher in patients with high expression of ZAP-70 compared to patients with low expression of ZAP-70 (mean miR-21 in high ZAP-70 (N=17) = 5.781 ± 1.517; mean miR-21 in low ZAP-70 (N=15) = 0.6783 ± 0.2730; p=0.0082). In order to further analyze the molecular mechanisms regulating the induction of miR-21 and the potential role of ZAP-70 protein in this process, we co-cultured primary CLL cells (N=16) in conditions mimicking the microenvironment in the proliferation centers (bone marrow stromal cells with concomitant stimulation of CD40 and TLR9). In these conditions, besides ZAP-70 activation, we observed a 3.6 ± 0.78 mean fold induction in miR-21 expression after 48 hours compared to cells in suspension. Interestingly, this increase was only significant in patients with high expression of ZAP-70 (N=8; p= 0.0379). To define the role of ZAP-70 in miR-21 regulation, we stably transfected Ramos B-cells with ZAP-70 protein and found that both MAPK and STAT3 participate in the induction of miR-21 expression after ZAP-70 activation upon BCR crosslinking. Moreover, using this system we observed downregulation of the tumor suppressors PTEN, PDCD4 and PIAS3, all of which have been found to be targeted by miR-21 in malignant cells. Next, we aimed to study the functional role of miR-21 in primary CLL cells co-cultured in conditions mimicking the microenvironment from the proliferation centers. For this, we analyzed survival, proliferation and response to fludarabine after inhibition of miR-21 expression by transfecting primary CLL cells with antisense miR-21 inhibitor. The co-culture of primary CLL cells significantly increased their survival after 48 hours regardless the inhibition of miR-21. However, the induction of proliferation (measured as percentage of Ki-67 positive cells) was significantly inhibited by the suppression of miR-21 (N=13; p=0.022). Next, the analysis of a small pilot cohort showed a consistent but not yet significant overcoming of the chemoresistance induced by the co-culture after the inhibition of miR-21 Interestingly, the sensitivity to fludarabine of primary CLL cells cultured in suspension was also increased by the inhibition of miR-21. Finally, we examined the ability of primary CLL cells to migrate towards CXCL12 and observed that inhibition of miR-21 resulted in a 2.62-fold reduction of the migration index (ratio of cells migrating towards culture media to cells migrating towards media with 200ng/mL CXCL12). In conclusion, we have showed the correlation and participation of ZAP-70 protein in the regulation of miR-21. We have also observed that miR-21 contributes to CLL proliferation, resistance to fludarabine, and chemotaxis towards CXCL12. Although further experiments are warranted in order to fully elucidate the regulation and functional role of miR-21 in CLL, these results help to enlighten the biology behind the adverse clinical outcome of patients with CLL and high expression of ZAP-70, and could potentially be exploited for the development of new treatments in a near future. Disclosures Bosch: Roche: Consultancy, Honoraria, Research Funding; Celgene: Consultancy, Honoraria, Research Funding.


2022 ◽  
Author(s):  
Yao Zhang ◽  
Jiazhao Xie ◽  
Yan-li Jiang ◽  
Shao-juan Yang ◽  
Hui Wei ◽  
...  

Abstract Background Elevated serum homocysteine (Hcy) is an independent risk factor of Alzheimer’s disease (AD). It has been reported that Hcy dramatically accelerates the aging of endothelial progenitor cells or endothelial cells. However, whether and how Hcy produces neuronal senescence is largely unknown. Methods Mouse neuroblastma 2a (N2a) cells were treated with Hcy, and senescence-associated β-galactosidase (SA-β-gal) staining was applied to assay senescence. Senescent markers and related proteins were examined by western blot, quantitative Polymerase Chain Reaction (qPCR), immunofluorescence staining. Methylation of promoter was assay by bisulfite sequencing PCR (BSP). Immunoprecipitation (IP) was applied to examine association between proteins. Rats were injected with homocysteine and examined neuronal senescence. Results In this study, we observed that Hcy significantly promoted the senescence of N2a cells with elevated β-catenin and Kelch like ECH-associated protein 1 (Keap1). Intriguingly, Hcy increased the interaction between Keap1 and Wilms tumor gene on X chromosome (WTX), but decreased β-catenin-WTX interaction simultaneously. Mechanistically, Hcy attenuated the methylation level of Keap1 promoter’s CqG island and activated the transcription of Keap1. While, slow degradation rate rather than transcriptional activation contributed to the high level of β-catenin. Hcy-increased Keap1 competed with β-catenin to bind to WTX. Knockdown of β-catenin and Keap1 both attenuated Hcy-induced senescence of N2a cells. Hcy-induced rats model also showed neuronal senescence in cortex along with elevated senescent markers. Conclusions Our data highlight a crucial role of Keap1-β-catenin pathway in Hcy-induced neuronal-like senescence and provide a promising target for AD treatment.


2019 ◽  
Vol 21 (1) ◽  
pp. 39 ◽  
Author(s):  
Carlos Huertas-Castaño ◽  
María A. Gómez-Muñoz ◽  
Ricardo Pardal ◽  
Francisco M. Vega

Neuroblastoma is the most frequent extracranial solid tumour in children, causing 10% of all paediatric oncology deaths. It arises in the embryonic neural crest due to an uncontrolled behaviour of sympathetic nervous system progenitors, giving rise to heterogeneous tumours. Low local or systemic tissue oxygen concentration has emerged as a cellular stimulus with important consequences for tumour initiation, evolution and progression. In neuroblastoma, several evidences point towards a role of hypoxia in tumour initiation during development, tumour cell differentiation, survival and metastatic spreading. However, the heterogeneous nature of the disease, its developmental origin and the lack of suitable experimental models have complicated a clear understanding of the effect of hypoxia in neuroblastoma tumour progression and the molecular mechanisms implicated. In this review, we have compiled available evidences to try to shed light onto this important field. In particular, we explore the effect of hypoxia in neuroblastoma cell transformation and differentiation. We also discuss the experimental models available and the emerging alternatives to study this problem, and we present hypoxia-related therapeutic avenues being explored in the field.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xixi Yang ◽  
Yichong Wen ◽  
Yuxiang Zhang ◽  
Feifei Gao ◽  
Jingsi Yang ◽  
...  

Drug-induced memory engages complex and dynamic processes and is coordinated at multiple reward-related brain regions. The spatiotemporal molecular mechanisms underlying different addiction phases remain unknown. We investigated the role of β-actin, as well as its potential modulatory protein activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) and extracellular signal-regulated kinase (ERK), in reward-related associative learning and memory using morphine-induced conditioned place preference (CPP) in mice. CPP was established by alternate morphine (10 mg/kg) injections and extinguished after a 10-day extinction training, while the withdrawal group failed to extinguish without training. In the nucleus accumbens (NAc), morphine enhanced the level of β-actin and Arc only during extinction, while p-ERK1/2 was increased during both CPP acquisition and extinction phases. In the dorsal hippocampus, morphine induced an upregulation of p-ERK only during extinction, while p-β-actin was elevated during both CPP establishment and extinction. In the dorsal hippocampus, Arc was elevated during CPP formation and suppressed during extinction. Compared with the NAc and dorsal hippocampus, dynamic changes in the medial prefrontal cortex (mPFC) and caudate putamen (CPu) were not very significant. These results suggested region-specific changes of p-β-actin, Arc/Arg3.1, and p-ERK1/2 protein during establishment and extinction phases of morphine-induced CPP. These findings unveiled a spatiotemporal molecular regulation in opiate-induced plasticity.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Sign in / Sign up

Export Citation Format

Share Document