scholarly journals Persistence of SARS CoV-2 S1 Protein in CD16+ Monocytes in Post-Acute Sequelae of COVID-19 (PASC) up to 15 Months Post-Infection

2022 ◽  
Vol 12 ◽  
Author(s):  
Bruce K. Patterson ◽  
Edgar B. Francisco ◽  
Ram Yogendra ◽  
Emily Long ◽  
Amruta Pise ◽  
...  

The recent COVID-19 pandemic is a treatment challenge in the acute infection stage but the recognition of chronic COVID-19 symptoms termed post-acute sequelae SARS-CoV-2 infection (PASC) may affect up to 30% of all infected individuals. The underlying mechanism and source of this distinct immunologic condition three months or more after initial infection remains elusive. Here, we investigated the presence of SARS-CoV-2 S1 protein in 46 individuals. We analyzed T-cell, B-cell, and monocytic subsets in both severe COVID-19 patients and in patients with post-acute sequelae of COVID-19 (PASC). The levels of both intermediate (CD14+, CD16+) and non-classical monocyte (CD14Lo, CD16+) were significantly elevated in PASC patients up to 15 months post-acute infection compared to healthy controls (P=0.002 and P=0.01, respectively). A statistically significant number of non-classical monocytes contained SARS-CoV-2 S1 protein in both severe (P=0.004) and PASC patients (P=0.02) out to 15 months post-infection. Non-classical monocytes were sorted from PASC patients using flow cytometric sorting and the SARS-CoV-2 S1 protein was confirmed by mass spectrometry. Cells from 4 out of 11 severe COVID-19 patients and 1 out of 26 PASC patients contained ddPCR+ peripheral blood mononuclear cells, however, only fragmented SARS-CoV-2 RNA was found in PASC patients. No full length sequences were identified, and no sequences that could account for the observed S1 protein were identified in any patient. That non-classical monocytes may be a source of inflammation in PASC warrants further study.

2021 ◽  
Author(s):  
Bruce Patterson ◽  
Edgar B. Francisco ◽  
Ram Yogendra ◽  
Emily Long ◽  
Amruta Pise ◽  
...  

The recent COVID-19 pandemic is a treatment challenge in the acute infection stage but the recognition of chronic COVID-19 symptoms termed post-acute sequelae SARS-CoV-2 infection (PASC) may affect up to 30% of all infected individuals. The underlying mechanism and source of this distinct immunologic condition three months or more after initial infection remains elusive. Here, we investigated the presence of SARS-CoV-2 S1 protein in 46 individuals. We analyzed T-cell, B-cell, and monocytic subsets in both severe COVID-19 patients and in patients with post-acute sequelae of COVID-19 (PASC). The levels of both intermediate (CD14+, CD16+) and non-classical monocyte (CD14Lo, CD16+) were significantly elevated in PASC patients up to 15 months post-acute infection compared to healthy controls (P=0.002 and P=0.01, respectively). A statistically significant number of non-classical monocytes contained SARS-CoV-2 S1 protein in both severe (P=0.004) and PASC patients (P=0.02) out to 15 months post-infection. Non-classical monocytes were sorted from PASC patients using flow cytometric sorting and the SARS-CoV-2 S1 protein was confirmed by mass spectrometry. Cells from 4 out of 11 severe COVID-19 patients and 1 out of 26 also contained SARS-CoV-2 RNA. Non-classical monocytes are capable of causing inflammation throughout the body in response to fractalkine/CX3CL1 and RANTES/CCR5.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Piyawan Kochayoo ◽  
Siriruk Changrob ◽  
Kittikorn Wangriatisak ◽  
Seong Kyun Lee ◽  
Patchanee Chootong ◽  
...  

Abstract Background Rhoptries are the large, paired, secretory organelles located at the apical tip of the malaria merozoite that are considered important for parasite invasion processes. Plasmodium vivax rhoptry proteins have been shown to induce humoral immunity during natural infections. Therefore, these proteins may be potential novel vaccine candidates. However, there is a lack of data on the duration of antibody and memory B cell (MBC) responses. Here, the longitudinal analysis of antibody and MBC responses to the P. vivax rhoptry proteins PvRALP1-Ecto and PvRhopH2 were monitored and analysed in individuals to determine their persistence. Methods Thirty-nine samples from P. vivax-infected subjects (age 18–60 years) were recruited to explore the frequency and persistence of antibody and MBC responses against rhoptry proteins (PvRALP1-Ecto and PvRhopH2) using both cross-sectional and longitudinal cohort study designs. Antibody levels were determined by ELISA during clinical malaria, and at 3, 9 and 12 months post-infection. The frequency of MBC sub-sets and presence of rhoptry-specific MBCs in subjects 18 months after treatment were detected by flow cytometry and ELISPOT assay. Results The seroprevalence of antibodies against PvRALP1-Ecto and PvRhopH2 proteins was found to be high during acute infection, with IgG1, IgG2 and IgG3 sub-classes predominant. However, these anti-rhoptry responses were short-lived and significantly decreased at 9 months post-infection. To relate the durability of these antibody responses to MBC persistence at post-infection, 18-month post-infection peripheral blood mononuclear cells (PBMCs) samples were taken to detect rhoptry-specific MBCs and frequency of MBC sub-sets, and correlate with antibody responses. These late post-infection samples revealed that rhoptry-specific MBCs were present in about 70% of total subjects. However, the persistence of specific MBCs was not correlated with antibody responses as the majority of malaria subjects who were positive for PvRALP1-Ecto- or PvRhopH2-specific MBCs were seronegative for the rhoptry antigens. The frequencies of classical MBCs were increased after infection, whereas those of activated and atypical MBCs were decreased, indicating that MBC responses could switch from activated or atypical MBCs to classical MBCs after parasite clearance, and were maintained in blood circulating at post-infection. Conclusion The study showed that rhoptry antigens induced the development and persistence of MBC responses in P. vivax-infected subjects who lived in a region of low malaria transmission, which were not related to the longevity of antibody responses.


2016 ◽  
Vol 54 (4) ◽  
pp. 902-911 ◽  
Author(s):  
Feiyu Hong ◽  
Evgenia Aga ◽  
Anthony R. Cillo ◽  
Aarika L. Yates ◽  
Guillaume Besson ◽  
...  

Although a number of PCR-based quantitative assays for measuring HIV-1 persistence during suppressive antiretroviral therapy (ART) have been reported, a simple, sensitive, reproducible method is needed for application to large clinical trials. We developed novel quantitative PCR assays for cell-associated (CA) HIV-1 DNA and RNA, targeting a highly conserved region in HIV-1pol, with sensitivities of 3 to 5 copies/1 million cells. We evaluated the performance characteristics of the assays using peripheral blood mononuclear cells (PBMCs) from 5 viremic patients and 20 patients receiving effective ART. Total and resting CD4+T cells were isolated from a subset of patients and tested for comparison with PBMCs. The estimated standard deviations including interassay variability and intra-assay variability of the assays were modest, i.e., 0.15 and 0.10 log10copies/106PBMCs, respectively, for CA HIV-1 DNA and 0.40 and 0.19 log10copies/106PBMCs for CA HIV-1 RNA. Testing of longitudinally obtained PBMC samples showed little variation for either viremic patients (median fold differences of 0.80 and 0.88 for CA HIV-1 DNA and RNA, respectively) or virologically suppressed patients (median fold differences of 1.14 and 0.97, respectively). CA HIV-1 DNA and RNA levels were strongly correlated (r= 0.77 to 1;P= 0.0001 to 0.037) for assays performed using PBMCs from different sources (phlebotomy versus leukapheresis) or using total or resting CD4+T cells purified by either bead selection or flow cytometric sorting. Their sensitivity, reproducibility, and broad applicability to small numbers of mononuclear cells make these assays useful for observational and interventional studies that examine longitudinal changes in the numbers of HIV-1-infected cells and their levels of transcription.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1018
Author(s):  
Abby C. Lee ◽  
Grant Castaneda ◽  
Wei Tse Li ◽  
Chengyu Chen ◽  
Neil Shende ◽  
...  

Patients with underlying cardiovascular conditions are particularly vulnerable to severe COVID-19. In this project, we aimed to characterize similarities in dysregulated immune pathways between COVID-19 patients and patients with cardiomyopathy, venous thromboembolism (VTE), or coronary artery disease (CAD). We hypothesized that these similarly dysregulated pathways may be critical to how cardiovascular diseases (CVDs) exacerbate COVID-19. To evaluate immune dysregulation in different diseases, we used four separate datasets, including RNA-sequencing data from human left ventricular cardiac muscle samples of patients with dilated or ischemic cardiomyopathy and healthy controls; RNA-sequencing data of whole blood samples from patients with single or recurrent event VTE and healthy controls; RNA-sequencing data of human peripheral blood mononuclear cells (PBMCs) from patients with and without obstructive CAD; and RNA-sequencing data of platelets from COVID-19 subjects and healthy controls. We found similar immune dysregulation profiles between patients with CVDs and COVID-19 patients. Interestingly, cardiomyopathy patients display the most similar immune landscape to COVID-19 patients. Additionally, COVID-19 patients experience greater upregulation of cytokine- and inflammasome-related genes than patients with CVDs. In all, patients with CVDs have a significant overlap of cytokine- and inflammasome-related gene expression profiles with that of COVID-19 patients, possibly explaining their greater vulnerability to severe COVID-19.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Xin Hu ◽  
Xiaoqian Shang ◽  
Liang Wang ◽  
Jiahui Fan ◽  
Yue Wang ◽  
...  

Abstract Aim Brucellar spondylitis (BS) is one of the most serious complications of brucellosis. CXCR3 is closely related to the severity of disease infection. This research aimed to study the degree of BS inflammatory damage through analyzing the expression levels of CXCR3 and its ligands (CXCL9 and CXCL10) in patients with BS. Methods A total of 29 BS patients and 15 healthy controls were enrolled. Real-Time PCR was used to detect the mRNA expression levels of IFN-γ, CXCR3, CXCL9 and CXCL10 in peripheral blood mononuclear cells (PBMCs) of BS patients and healthy controls. Hematoxylin-Eosin staining was used to show the pathological changes in BS lesion tissues. Immunohistochemistry staining was used to show the protein expression levels of Brucella-Ab, IFN-γ, CXCR3, CXCL9 and CXCL10 in BS lesion tissues. At the same time, ELISA was used to detect the serum levels of IFN-γ, CXCL9 CXCL10 and autoantibodies against CXCR3 in patients with BS. Results In lesion tissue of BS patients, it showed necrosis of cartilage, acute or chronic inflammatory infiltration. Brucella-Ab protein was abundantly expressed in close lesion tissue. And the protein expression levels of IFN-γ, CXCR3 and CXCL10 were highly expressed in close lesion tissue and serum of BS patients. At the same time, the mRNA expression levels of IFN-γ, CXCR3 and CXCL10 in PBMCs of BS patients were significantly higher than those in controls. Conclusion In our research, the expression levels of IFN-γ, CXCR3 and its ligands were significantly higher than those in controls. It suggested that high expression levels of IFN-γ, CXCR3 and its ligands indicated a serious inflammatory damage in patients with BS.


2018 ◽  
Vol 115 (6) ◽  
pp. 1029-1040 ◽  
Author(s):  
Karin A L Mueller ◽  
David B Hanna ◽  
Erik Ehinger ◽  
Xiaonan Xue ◽  
Livia Baas ◽  
...  

AbstractAimsTo test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women.Methods and resultssCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women’s Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV−/sCVD−, HIV−/sCVD+, HIV+/sCVD−, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV−/CVD− [628, interquartile range (IQR) (295–1389)], followed by HIV+/CVD− [486, IQR (248–699)], HIV−/CVD+ (398, IQR (89–901)), and lowest in HIV+/CVD+ women [226, IQR (73–519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV−/CVD− vs. HIV+/CVD+ remained significant with P = 0.005 (HIV−/CVD− vs. HIV+/CVD− P = 0.04, HIV−/CVD− vs. HIV−/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD− P = 0.88, HIV+/CVD+ vs. HIV−/CVD+ P = 0.81, HIV+/CVD− vs. HIV−/CVD+, P = 0.99). All pairwise comparisons with HIV−/CVD− were individually significant (P = 0.050 vs. HIV−/CVD+, P = 0.028 vs. HIV+/CVD−, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD− (501.5, IQR (249.5–887.3)) vs. CVD+ (297, IQR (81.75–626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV−related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes.ConclusionCXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.


2020 ◽  
Author(s):  
Jian-ting Wen ◽  
Jian Liu ◽  
Hui Jiang ◽  
Lei Wan ◽  
Ling Xin ◽  
...  

Abstract Background: The most severe effects of rheumatoid arthritis (RA) are loss of physical function, which may have a significant impact on self-perception of patient (SPP). However, the inherent relationship between SPP and the key proteins is not clear. The aim of this study was to get an insight into SPP of RA in connection with the the apoptosis-related proteins. Methods: We set out to investigate changes of the apoptosis-related proteins expression in the peripheral blood mononuclear cells (PBMCs) of RA. Additionally, we aimed to correlate the apoptosis-related proteins expression profiles with SPP and clinical indexes. To this end, we employed antibody microarrays of the the apoptosis-related proteins in PBMCs from four RA patients and seven healthy controls. We used bioinformatics to screen several the apoptosis-related proteins. To validate key protein candidates, we performed Enzyme linked immunosorbent assay (ELISA) on 30 RA patients and 30 healthy controls. Results: We found the expression of ten the apoptosis-related proteins (caspase3, CD40, SMAC, HSP27, HTRA, IGFBP-1, IGFBP-6, sTNF-R1, sTNF-R2, TRAILR-3) were significantly altered in PBMCs of RA patients. Receiver operating characteristic (ROC) curve analysis suggested that these ten the apoptosis-related proteins are potential biomarkers of RA. Spearman Correlation analysis and Logistic-regression analysis revealed that the 10 selected the apoptosis-related proteins correlated with SPP and clinical indexes. Conclusion: Therefore, we highlight some the apoptosis-related proteins may serve as potential biomarkers in prediction of SPP for RA patients, although the underlying mechanisms need to be further explored.


2008 ◽  
Vol 89 (6) ◽  
pp. 1329-1337 ◽  
Author(s):  
Heide Niesalla ◽  
Tom N. McNeilly ◽  
Margaret Ross ◽  
Susan M. Rhind ◽  
Gordon D. Harkiss

Experiments were performed to determine whether visna/maedi virus (VMV), a small ruminant lentivirus (SRLV), could infect sheep via ocular tissues. The EV1 strain of VMV was administered into the conjunctival space of uninfected sheep, and the animals monitored for the presence of provirus DNA and anti-VMV antibodies in blood. The results showed that provirus DNA appeared in peripheral blood mononuclear cells of all animals within a few weeks of receiving either 106 TCID50 or 103 TCID50 of VMV. Of the animals receiving the higher dose of virus via the conjunctival space, two seroconverted by 7 and 10 weeks post-infection, one seroconverted 8 months post-infection, and one had not seroconverted by 15 months post-infection. With the lower virus dose, the animals infected via the trachea seroconverted by 4 and 14 weeks, respectively. After ocular infection with this dose, one animal showed a transitory seroconversion with low levels of antibody, peaking at 2 weeks post-administration. The remaining three of the animals infected via the eyes did not seroconvert over a period of 13 months. At post-mortem, evidence for the presence of proviral DNA was obtained from ocular tissue, lungs or mediastinal lymph node in both groups of animals. Histological analysis of lung tissue from animals receiving the lower dose of virus showed the presence of early inflammatory lesions. The results thus show for the first time that transmission of VMV can occur via ocular tissues, suggesting that the conjunctival space may be an additional route of natural transmission.


Sign in / Sign up

Export Citation Format

Share Document