scholarly journals Titanium Nanoparticles Enhance Production and Suppress Stabilin-1-Mediated Clearance of GDF-15 in Human Primary Macrophages

2021 ◽  
Vol 12 ◽  
Author(s):  
Lina S. Silva-Bermudez ◽  
Tatyana N. Sevastyanova ◽  
Christina Schmuttermaier ◽  
Carolina De La Torre ◽  
Leonie Schumacher ◽  
...  

Macrophages are key innate immune cells that mediate implant acceptance or rejection. Titanium implants degrade over time inside the body, which results in the release of implant wear-off particles. Titanium nanoparticles (TiNPs) favor pro-inflammatory macrophage polarization (M1) and lower tolerogenic activation (M2). GDF-15 regulates immune tolerance and fibrosis and is endocytosed by stabilin-1. How TiNPs affect the healing activities of macrophages and their release of circulating cytokines is an open question in regenerative medicine. In this study for the first time, we identified the transcriptional program induced and suppressed by TiNPs in human pro-inflammatory and healing macrophages. Microarray analysis revealed that TiNPs altered the expression of 5098 genes in M1 (IFN-γ-stimulated) and 4380 genes in M2 (IL-4–stimulated) macrophages. 1980 genes were differentially regulated in both M1 and M2. Affymetrix analysis, confirmed by RT-PCR, demonstrated that TiNPs upregulate expression of GDF-15 and suppress stabilin-1, scavenger receptor of GDF-15. TiNPs also significantly stimulated GDF-15 protein secretion in inflammatory and healing macrophages. Flow cytometry demonstrated, that scavenging activity of stabilin-1 was significantly suppressed by TiNPs. Confocal microscopy analysis showed that TiNPs impair internalization of stabilin-1 ligand acLDL and its transport to the endocytic pathway. Our data demonstrate that TiNPs have a dual effect on the GDF-15/stabilin-1 interaction in macrophage system, by increasing the production of GDF-15 and suppressing stabilin-1-mediated clearance function. In summary, this process can result in a significant increase of GDF-15 in the extracellular space and in circulation leading to unbalanced pro-fibrotic reactions and implant complications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shreeya Sriram ◽  
Shitij Avlani ◽  
Matthew P. Ward ◽  
Shreyas Sen

AbstractContinuous multi-channel monitoring of biopotential signals is vital in understanding the body as a whole, facilitating accurate models and predictions in neural research. The current state of the art in wireless technologies for untethered biopotential recordings rely on radiative electromagnetic (EM) fields. In such transmissions, only a small fraction of this energy is received since the EM fields are widely radiated resulting in lossy inefficient systems. Using the body as a communication medium (similar to a ’wire’) allows for the containment of the energy within the body, yielding order(s) of magnitude lower energy than radiative EM communication. In this work, we introduce Animal Body Communication (ABC), which utilizes the concept of using the body as a medium into the domain of untethered animal biopotential recording. This work, for the first time, develops the theory and models for animal body communication circuitry and channel loss. Using this theoretical model, a sub-inch$$^3$$ 3 [1″ × 1″ × 0.4″], custom-designed sensor node is built using off the shelf components which is capable of sensing and transmitting biopotential signals, through the body of the rat at significantly lower powers compared to traditional wireless transmissions. In-vivo experimental analysis proves that ABC successfully transmits acquired electrocardiogram (EKG) signals through the body with correlation $$>99\%$$ > 99 % when compared to traditional wireless communication modalities, with a 50$$\times$$ × reduction in power consumption.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1445
Author(s):  
Taisa Nogueira Pansani ◽  
Thanh Huyen Phan ◽  
Qingyu Lei ◽  
Alexey Kondyurin ◽  
Bill Kalionis ◽  
...  

Extracellular vesicles (EVs) are nanoparticles released by cells that contain a multitude of biomolecules, which act synergistically to signal multiple cell types. EVs are ideal candidates for promoting tissue growth and regeneration. The tissue regenerative potential of EVs raises the tantalizing possibility that immobilizing EVs on implant surfaces could potentially generate highly bioactive and cell-instructive surfaces that would enhance implant integration into the body. Such surfaces could address a critical limitation of current implants, which do not promote bone tissue formation or bond bone. Here, we developed bioactive titanium surface coatings (SurfEV) using two types of EVs: secreted by decidual mesenchymal stem cells (DEVs) and isolated from fermented papaya fluid (PEVs). For each EV type, we determined the size, morphology, and molecular composition. High concentrations of DEVs enhanced cell proliferation, wound closure, and migration distance of osteoblasts. In contrast, the cell proliferation and wound closure decreased with increasing concentration of PEVs. DEVs enhanced Ca/P deposition on the titanium surface, which suggests improvement in bone bonding ability of the implant (i.e., osteointegration). EVs also increased production of Ca and P by osteoblasts and promoted the deposition of mineral phase, which suggests EVs play key roles in cell mineralization. We also found that DEVs stimulated the secretion of secondary EVs observed by the presence of protruding structures on the cell membrane. We concluded that, by functionalizing implant surfaces with specialized EVs, we will be able to enhance implant osteointegration by improving hydroxyapatite formation directly at the surface and potentially circumvent aseptic loosening of implants.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caleb Liang ◽  
Wen-Hsiang Lin ◽  
Tai-Yuan Chang ◽  
Chi-Hong Chen ◽  
Chen-Wei Wu ◽  
...  

AbstractBody ownership concerns what it is like to feel a body part or a full body as mine, and has become a prominent area of study. We propose that there is a closely related type of bodily self-consciousness largely neglected by researchers—experiential ownership. It refers to the sense that I am the one who is having a conscious experience. Are body ownership and experiential ownership actually the same phenomenon or are they genuinely different? In our experiments, the participant watched a rubber hand or someone else’s body from the first-person perspective and was touched either synchronously or asynchronously. The main findings: (1) The sense of body ownership was hindered in the asynchronous conditions of both the body-part and the full-body experiments. However, a strong sense of experiential ownership was observed in those conditions. (2) We found the opposite when the participants’ responses were measured after tactile stimulations had ceased for 5 s. In the synchronous conditions of another set of body-part and full-body experiments, only experiential ownership was blocked but not body ownership. These results demonstrate for the first time the double dissociation between body ownership and experiential ownership. Experiential ownership is indeed a distinct type of bodily self-consciousness.


Author(s):  
Gemma Almond

Abstract This study explores the representation and use of Victorian visual aids, specifically focusing on how the design of spectacle and eyeglass frames shaped ideas of the ‘normal’ and ‘abnormal’ body. It contributes to our understanding of assistive technologies in the Victorian period by showcasing the usefulness of material evidence for exploring how an object was produced and perceived. By placing visual aids in their medical and cultural context for the first time, it will show how the study of spectacle and eyeglass frames develops our understanding of Victorian society more broadly. Contemporaries drew upon industrialization, increasing education, and the proliferation of print to explain a rise in refractive vision ‘errors’. Through exploring the design of three spectacle frames from the London Science Museum’s collections, this study will show how the representations and manufacture of visual aids transformed in response to these wider changes. The material evidence, as well as contemporary newspapers, periodicals, and medical texts, reveal that visual aids evolved from an unusual to a more mainstream device. It argues that visual aids are a unique assistive technology, one that is able to inform our understanding of how Victorians measured the body and constructed ideas of ‘normalcy’ and ‘abnormalcy’.


2011 ◽  
Vol 170 ◽  
pp. 165-169 ◽  
Author(s):  
Tahir Ali ◽  
Ernst Bauer ◽  
Gerfried Hilscher ◽  
Herwig Michor

We report on structural and superconducting properties of La3-xRxNi2B2N3- where La is substituted by the magnetic rare-earth elements Ce, Pr, Nd. The compounds Pr3Ni2B2N3- and Nd3Ni2B2N3- are characterized for the first time. Powder X-ray diffraction confirmed all samples R3Ni2B2N3- with R = La, Ce, Pr, Nd and their solid solutions to crystallize in the body centered tetragonal La3Ni2B2N3 structure type. Superconducting and magnetic properties of La3-xRxNi2B2N3- were studied by resistivity, specific heat and susceptibility measurements. While La3Ni2B2N3- has a superconducting transition temperature Tc ~ 14 K, substitution of La by Ce, Pr, and Nd leads to magnetic pair breaking and, thus, to a gradual suppression of superconductivity. Pr3Ni2B2N3- exibits no long range magnetic order down to 2 K, Nd3Ni2B2N3- shows ferrimagnetic ordering below TC =17 K and a spin reorientation transition to a nearly antiferromagnetic state at 10 K.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
B. V. Borysevych ◽  
◽  
V. V. Lisova ◽  
I. M. Derkach ◽  
S. S. Derkach ◽  
...  

Iron (IV) clathrochelate based on a macrobicyclic ligand of the hexahydrazide type is a unique compound that contains iron in a rare high valence IV. Preclinical and clinical studies of this complex, which were started for the first time in Ukraine, have an important theoretical and practical consequence as this complex can be recommended as an active substance in iron-containing drugs with antianemic action. In conducting preclinical studies of new drugs, pathomorphological studies are important because they are a necessary step in studying the biological response of animals to the action of test substances. It was found that some pathological changes develop in the body of white mice under conditions of experimental acute and chronic iron (IV) clathrochelate intoxication. They correlated with the dose of the test compound. During chronic intoxication, the microscopic changes in the liver and kidney of white mice treated with iron (IV) clathrochelate at a dose of 1/10 DL50 were similar to the microscopic changes in the liver and kidney of mice treated with the experimental drug at a dose of 1/5 DL50. However, the severity of these changes was lower, reflecting a lower degree of organ damage. In the myocardium of mice treated with iron (IV) clathrochelate at a dose of 1/5 DL50 on the 10th day, as in acute iron (IV) clathrochelate poisoning, only edema was recorded. The prospects for further research are the study of microscopic changes in the organs of laboratory animals of other species during experimental iron (IV) clathrochelate toxicosis.


Author(s):  
Abou-eisha A ◽  
Adel E El-din

Objective: The aim of this study was to investigate, for the first time, the possible in vivo genotoxic and carcinogenic activity associated with exposure to norgestrel (NGT) drug through employing the very recently established and adjusted genotoxic and tumorigenic methods in Drosophila melanogaster.Methods: Two in vivo genotoxic test systems were used; one detects the somatic mutation and recombination effects (somatic mutation and recombination test [SMART] wing-spot test) and the other detects the primary DNA damage (the comet test) in the body cells of D. melanogaster. On the other hand, the warts (wts)-based SMART assay is a vital genetic examination in Drosophila used to identify and characterize cancer potential of compounds.Results: Four experimental doses of NGT were used (ranging from 0.24 μM to 16 μM). NGT was found to be non-genotoxic at all tested concentrations even at the highest dose level 16 μM and failed to increase the frequency of tumors in the somatic cells of D. melanogaster.Conclusion: Our results strengthen the hypothesis that steroidal drugs might act through a non-genotoxic carcinogen mechanism where the carcinogenic properties occur by direct stimulation of cellular proliferation through a steroid receptor-mediated mechanism. In addition, the results obtained in this research work may contribute to highlighting the importance of NGT as a potent neuroprotective antioxidant drug.


1999 ◽  
Vol 13 (20) ◽  
pp. 709-715 ◽  
Author(s):  
FRANCESCA MORESCO ◽  
GERHARD MEYER ◽  
KARL HEINZ RIEDER

Vibrational excitations of an isolated CO molecule adsorbed on a Cu(211) surface have been, for the first time, observed with a CO terminated scanning tunneling microscope tip. Both the frustrated translational and rotational modes were observed, and in agreement with the case of a metallic tip. The presence of a CO molecule on the tip, transferred by controlled vertical manipulation, strongly influences the frustrated translational mode of the CO molecule, while it does not affect the frustrated rotational mode. The present work demonstrates that scanning tunneling vibrational spectroscopy is also possible with a molecule at the end of the tip, opening new interesting fields of research and putting some more light on the still open question of inelastic tunneling and its selection rules.


2018 ◽  
Vol 63 (4) ◽  
pp. 835-838 ◽  
Author(s):  
Roser Adalid ◽  
Jordi Torres ◽  
Marcos Miñarro ◽  
Màrius Vicent Fuentes ◽  
Jordi Miquel

Abstract The Ityogonimus lorum-I. ocreatus co-infection is reported for the first time in the Iberian mole Talpa occidentalis in Asturias (NW Spain). Both Ityogonimus species are stenoxenous helminths of insectivores of the genus Talpa and they have often been found parasitizing the Iberian mole and also the European mole T. europaea, but a mixed infection had not been previously reported. The present study also highlights the main differential morphometric characteristics between I. lorum and I. ocreatus such as the body length, the ventral sucker diameter, the ratio between suckers and the distance between suckers.


2006 ◽  
Vol 50 (4) ◽  
pp. 36-43 ◽  
Author(s):  
Peter Sloterdijk

The articles in this first installment of a series on choreography that considers the relationship between philosophy and dance interrogate conceptions of the body, movement, and language. Translated for the first time into English, the selection by José Gil reads the dancing body as paradoxical through the writings of Gilles Deleuze and Félix Guattari; and the chapter by Peter Sloterdijk examines modernity's impulse toward movement and posits a critical theory of mobilization. An interview with choreographer Hooman Sharifi accompanies a meditation on his recent performance.


Sign in / Sign up

Export Citation Format

Share Document