scholarly journals Identification of Hub Biomarkers and Immune-Related Pathways Participating in the Progression of Antineutrophil Cytoplasmic Antibody-Associated Glomerulonephritis

2022 ◽  
Vol 12 ◽  
Author(s):  
Meng-Di Xia ◽  
Rui-Ran Yu ◽  
Dong-Ming Chen

BackgroundAntineutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) is a systemic autoimmune disease that generally induces the progression of rapidly progressive glomerulonephritis (GN). The purpose of this study was to identify key biomarkers and immune-related pathways involved in the progression of ANCA-associated GN (ANCA-GN) and their relationship with immune cell infiltration.MethodsGene microarray data were downloaded from the Gene Expression Omnibus (GEO). Hub markers for ANCA-GN were mined based on differential expression analysis, weighted gene co-expression network analysis (WGCNA) and lasso regression, followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) of the differential genes. The infiltration levels of 28 immune cells in the expression profile and their relationship to hub gene markers were analysed using single-sample GSEA (ssGSEA). In addition, the accuracy of the hub markers in diagnosing ANCA-GN was subsequently evaluated using the receiver operating characteristic curve (ROC).ResultsA total of 651 differential genes were screened. Twelve co-expression modules were obtained via WGCNA; of which, one hub module (black module) had the highest correlation with ANCA-GN. A total of 66 intersecting genes were acquired by combining differential genes. Five hub genes were subsequently obtained by lasso analysis as potential biomarkers for ANCA-GN. The immune infiltration results revealed the most significant relationship among monocytes, CD4+ T cells and CD8+ T cells. ROC curve analysis demonstrated a prime diagnostic value of the five hub genes. According to the functional enrichment analysis of the differential genes, hub genes were mainly enhanced in immune- and inflammation-related pathways.ConclusionB cells and monocytes were closely associated with the pathogenesis of ANCA-GN. Hub genes (CYP3A5, SLC12A3, BGN, TAPBP and TMEM184B) may be involved in the progression of ANCA-GN through immune-related signal pathways.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wei Xu ◽  
Jian Xu ◽  
Zhiqiang Wang ◽  
Yuequan Jiang

Objective. Esophageal cancer (ESCA) is one of the most aggressive malignancies globally with an undesirable five-year survival rate. Here, this study was conducted for determining specific functional genes linked with ESCA initiation and progression. Methods. Gene expression profiling of ESCA was curated from TCGA (containing 160 ESCA and 11 nontumor specimens) and GSE38129 (30 paired ESCA and nontumor tissues) datasets. Differential expression analysis was conducted between ESCA and nontumor tissues with adjusted p value <0.05 and |log2fold-change|>1. Weighted gene coexpression network analysis (WGCNA) was conducted for determining the ESCA-specific coexpression modules and genes. Thereafter, ESCA-specific differentially expressed genes (DEGs) were intersected. Functional enrichment analysis was then presented with clusterProfiler package. Protein-protein interaction was conducted, and hub genes were determined. Association of hub genes with pathological staging was evaluated, and survival analysis was presented among ESCA patients. Results. This study determined 91 ESCA-specific DEGs following intersection of DEGs and ESCA-specific genes in TCGA and GSE38129 datasets. They were remarkably linked to cell cycle progression and carcinogenic pathways like the p53 signaling pathway, cellular senescence, and apoptosis. Ten ESCA-specific hub genes were determined, containing ASPM, BUB1B, CCNA2, CDC20, CDK1, DLGAP5, KIF11, KIF20 A, TOP2A, and TPX2. They were prominently associated with pathological staging. Among them, KIF11 upregulation was in relation to undesirable prognosis of ESCA patients. Conclusion. Collectively, we determined ESCA-specific coexpression modules and hub genes, which offered the foundation for future research concerning the mechanistic basis of ESCA.


2021 ◽  
Author(s):  
Sheng Fang ◽  
Xiao Fang ◽  
Xin Xu ◽  
Lin Zhong ◽  
An-quan Wang ◽  
...  

Abstract Relevance Rheumatoid arthritis (RA) is a systemic autoimmune disease with an aggressive, chronic synovial inflammation as the main pathological change. However, the specific etiology, pathogenesis, and related biomarkers in diagnosis and treatment are still not fully elucidated. This study attempts to provide new perspectives and insights into RA at the genetic, molecular, and cellular levels through the tenet of personalized medicine. Methods Gene expression profiles of four individual knee synovial tissues were downloaded from a comprehensive gene expression database, R language was used to screen for significantly differentially expressed genes (DEGs), Gene Ontology Enrichment Analysis, Kyoto Gene Encyclopedia, and Gene Set Enrichment Analysis were performed to analyze the biological functions and signaling pathways of these DEGs, STRING online database was used to establish protein-protein interaction networks, Cytoscape software to obtain ten hub genes, Goplot to get six inflammatory immune-related hub genes, and CIBERSORT algorithm to impute immune infiltration. Results Molecular pathways that play important roles in RA were obtained: Toll-like receptors, AMPK, MAPK, TNF, FoxO, TGF-beta, PI3K and NF-κB pathways, Ten hub genes: Ccr1, Ccr2, Ccr5, Ccr7, Cxcl5, Cxcl6, Cxcl13, Ccl13, Adcy2, and Pnoc. among which Adcy2 and Pnoc have not been reported in RA studies, suggesting that they may be worthy targets for further study. It was also found that among the synoviocytes in RA, the proportions of plasma cells, CD8 T cells, follicular helper T cells, monocytes, γ delta T cells, and M0 macrophages were higher, while the proportions of CD4 memory resting T cells, regulatory T cells (Tregs), activated NK cells, resting dendritic cells, M1 macrophages, eosinophils, activated mast cells, resting mast cells were lower in proportion, and each cell played an important role in RA. Conclusions This study may help understand the key genes, molecular pathways, the role of inflammatory immune infiltrating cells in RA’s pathogenesis and provide new targets and ideas for the diagnosis and personalized treatment of RA.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jingyuan Zhang ◽  
Xinkui Liu ◽  
Wei Zhou ◽  
Shan Lu ◽  
Chao Wu ◽  
...  

BackgroundHepatocellular carcinoma (HCC) has become the main cause of cancer death worldwide. More than half of hepatocellular carcinoma developed from hepatitis B virus infection (HBV). The purpose of this study is to find the key genes in the transformation process of liver inflammation and cancer and to inhibit the development of chronic inflammation and the transformation from disease to cancer.MethodsTwo groups of GEO data (including normal/HBV and HBV/HBV-HCC) were selected for differential expression analysis. The differential expression genes of HBV-HCC in TCGA were verified to coincide with the above genes to obtain overlapping genes. Then, functional enrichment analysis, modular analysis, and survival analysis were carried out on the key genes.ResultsWe identified nine central genes (CDK1, MAD2L1, CCNA2, PTTG1, NEK2) that may be closely related to the transformation of hepatitis B. The survival and prognosis gene markers composed of PTTG1, MAD2L1, RRM2, TPX2, CDK1, NEK2, DEPDC1, and ZWINT were constructed, which performed well in predicting the overall survival rate.ConclusionThe findings of this study have certain guiding significance for further research on the transformation of hepatitis B inflammatory cancer, inhibition of chronic inflammation, and molecular targeted therapy of cancer.


2020 ◽  
Vol 10 ◽  
Author(s):  
Wen-Xiu Xu ◽  
Jian Zhang ◽  
Yu-Ting Hua ◽  
Su-Jin Yang ◽  
Dan-Dan Wang ◽  
...  

BackgroundLipocalin 2 (LCN2), an innate immune protein, plays a pivotal role in promoting sterile inflammation by regulating immune responses. However, the role of LCN2 in diverse cancers remains poorly defined. This research aimed to investigate the correlation between LCN2 expression and immunity and visualize its prognostic landscape in pan-cancer.MethodsRaw data in regard to LCN2 expression in cancer patients were acquired from TCGA and GTEx databases. Besides, we investigated the genomic alterations, expression pattern, and survival analysis of LCN2 in pan-cancer across numerous databases, including cBioPortal and GEPIA database. The correlation between LCN2 expression and tumor immune infiltration was explored via TIMER, and we utilized CIBERSORT and ESTIMATE computational methods to assess the proportion of tumor-infiltrating immune cells (TIICs) and the amount of stromal and immune components from TCGA database. Protein–Protein Interaction analysis was performed in GeneMANIA database, and gene functional enrichment was performed by Gene Set Enrichment Analysis (GSEA).ResultsOn balance, tumor tissue had a higher LCN2 expression level compared with that in normal tissue. Elevated expression of LCN2 was related to poor clinical regimen with OS and RFS. There were significant positive correlations between LCN2 expression and TIICs, including CD8+ T cells, CD4+ T cells, B cells, neutrophils, macrophages, and dendritic cells. Moreover, markers of TIICs exhibited different LCN2-related immune infiltration patterns. GSEA analysis showed that the expression of LCN2 was related to retinol metabolism, drug metabolism cytochrome P450 and metabolism of xenobiotics by cytochrome P450.ConclusionsThese findings suggested that LCN2 might serve as a biomarker for immune infiltration and poor prognosis in cancers, shedding new light on therapeutics of cancers.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Huan Deng ◽  
Qingqing Hang ◽  
Dijian Shen ◽  
Yibi Zhang ◽  
Ming Chen

Abstract Purpose Exploring the molecular mechanisms of lung adenocarcinoma (LUAD) is beneficial for developing new therapeutic strategies and predicting prognosis. This study was performed to select core genes related to LUAD and to analyze their prognostic value. Methods Microarray datasets from the GEO (GSE75037) and TCGA-LUAD datasets were analyzed to identify differentially coexpressed genes in LUAD using weighted gene coexpression network analysis (WGCNA) and differential gene expression analysis. Functional enrichment analysis was conducted, and a protein–protein interaction (PPI) network was established. Subsequently, hub genes were identified using the CytoHubba plug-in. Overall survival (OS) analyses of hub genes were performed. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Human Protein Atlas (THPA) databases were used to validate our findings. Gene set enrichment analysis (GSEA) of survival-related hub genes were conducted. Immunohistochemistry (IHC) was carried out to validate our findings. Results We identified 486 differentially coexpressed genes. Functional enrichment analysis suggested these genes were primarily enriched in the regulation of epithelial cell proliferation, collagen-containing extracellular matrix, transforming growth factor beta binding, and signaling pathways regulating the pluripotency of stem cells. Ten hub genes were detected using the maximal clique centrality (MCC) algorithm, and four genes were closely associated with OS. The CPTAC and THPA databases revealed that CHRDL1 and SPARCL1 were downregulated at the mRNA and protein expression levels in LUAD, whereas SPP1 was upregulated. GSEA demonstrated that DNA-dependent DNA replication and catalytic activity acting on RNA were correlated with CHRDL1 and SPARCL1 expression, respectively. The IHC results suggested that CHRDL1 and SPARCL1 were significantly downregulated in LUAD. Conclusions Our study revealed that survival-related hub genes closely correlated with the initiation and progression of LUAD. Furthermore, CHRDL1 and SPARCL1 are potential therapeutic and prognostic indicators of LUAD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
XinJie Yang ◽  
Sha Niu ◽  
JiaQiang Liu ◽  
Jincheng Fang ◽  
ZeYu Wu ◽  
...  

AbstractGlioblastoma (GBM) is a strikingly heterogeneous and lethal brain tumor with very poor prognosis. LncRNAs play critical roles in the tumorigenesis of GBM through regulation of various cancer-related genes and signaling pathways. Here, we focused on the essential role of EMT and identified 78 upregulated EMT-related genes in GBM through differential expression analysis and Gene set enrichment analysis (GSEA). A total of 301 EMT-related lncRNAs were confirmed in GBM through Spearman correlation analysis and a prognostic signature consisting of seven EMT-related lncRNAs (AC012615.1, H19, LINC00609, LINC00634, POM121L9P, SNHG11, and USP32P3) was established by univariate and multivariate Cox regression analyses. Significantly, Kaplan–Meier analysis and receiver-operating-characteristic (ROC) curve validated the accuracy and efficiency of the signature to be satisfactory. Quantitative real-time (qRT)-PCR assay demonstrated the expression alterations of the seven lncRNAs between normal glial and glioma cell lines. Functional enrichment analysis revealed multiple EMT and metastasis-related pathways were associated with the EMT-related lncRNA prognostic signature. In addition, we observed the degree of immune cell infiltration and immune responses were significantly increased in high-risk subgroup compared with low-risk subgroup. In conclusion, we established an effective and robust EMT-related lncRNA signature which was expected to predict the prognosis and immunotherapy response for GBM patients.


Author(s):  
Cong Luo ◽  
Zhixiong Liu ◽  
Wenrui Ye ◽  
Fangkun Liu

Background: Tumor microenvironment, especially infiltrating immune cell, is crucial for solid tumors including glioma. However, the hub genes as well as their effects on patient prognosis and immunotherapy efficacy remain obscure.Methods: We employed a total of 952 lower grade glioma (LGG) patients from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases, and 24 samples in our hospital for subsequent analyses. Abundances of immune infiltrates were evaluated using CIBERSORT and ImmuCellAI. Their correlations with prognosis were assessed by log-rank test. Immune infiltration-related hub genes were obtained from overlapped differential expressed genes (DEGs) in various subsets of survival-related immune cell types. The risk signature was constructed by Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis. The functional analyses were estimated by GVSA and Gene Set Enrichment Analysis (GSEA) algorithms. And protein–protein interaction enrichment analysis was carried out with the Metascape database integrating STRING, BioGrid, OmniPath, and InWeb_IM.Results: Among the 21 infiltrates, the abundances of five immune infiltrates were correlated with overall survival (OS) in LGG patients. Higher abundances of naïve CD4+ T cells (p = 0.002), activated mast cells (p = 0.015), and monocytes (p = 0.014) were correlated with better prognosis, while higher abundances of resting memory CD4+ T cells (p = 0.015) and M1 macrophages (p = 0.020) correlated with poorer OS. We finally obtained 44 hub genes and constructed an immune infiltration-related signature (IIRS). The IIRS correlates with clinicopathological characteristics and exhibited potential power in predicting the immunotherapy efficacy. The IRRS correlates with cancer related pathways, especially “epithelial-mesenchymal transition (EMT),” and cytotoxic T lymphocytes.Conclusion: Our study constructed and validated a novel signature for risk stratification and prediction of immunotherapy response in grade II and III gliomas, which was closely associated with glioma immune microenvironment and could serve as a promising prognostic biomarker for glioma patients.


2021 ◽  
Author(s):  
Liuxun Li ◽  
Xiaokang Du ◽  
Haiqian Ling ◽  
Yuhang Li ◽  
Xuemin Wu ◽  
...  

Abstract Background: Sciatic nerve injury (SNI), which frequently occurs under the traumatic hip and hip fracture dislocation, induces serious complications such as motor and sensory loss, muscle atrophy, or even disabling. The present work aimed to determine the regulating factors and gene network related to the SNI pathology.Methods: Sciatic nerve injury dataset GSE18803 with 24 samples was randomly divided into adult group and neonate group. We performed weighted gene co-expression network analysis (WGCNA) to identify modules associated with SNI in the two groups. Moreover, differentially expressed genes (DEGs) were determined from every group, separately. Subsequently, co-expression network, protein-protein interaction (PPI) network, enrichment analysis and gene set enrichment analysis (GSEA) were integrated to identify hub genes and associated pathways. GSE30165 was used as the test set for investigating the hub gene involvement within SNI. Finally, we employed DGIdb for predicting the possible therapeutic agents leading to the abnormal up-regulation of hub genes.Results: 14 SNI status modules and 97 DEGs were identified in adult group, while 15 modules and 21 DEGs in neonate group. A total of 12 hub genes was overlapping from co-expression and PPI network. After the results from both test and training sets were overlapped, we verified that the ten real hub genes showed remarkably up-regulation within SNI. According to functional enrichment of DEGs, the above genes participated in the immune effector process, inflammatory responses, the antigen processing and presentation, and the phagocytosis. GSEA also supported that gene sets with the highest significance was mostly related to the cytokine-cytokine receptor interaction.Conclusions: The gene expression network is determined in the present work based on the related regulating factors within SNI, which sheds more lights on SNI pathology and offers the possible biomarkers and therapeutic targets in subsequent research.


2021 ◽  
Author(s):  
Florian Jeanneret ◽  
Stephane Gazut

The advent of high-throughput techniques has greatly enhanced biological discovery. Last years, analysis of multi-omics data has taken the front seat to improve physiological understanding. Handling functional enrichment results from various biological data raises practical questions. We propose an integrative workflow to better interpret biological process insights in a multi-omics approach applied to breast cancer data from The Cancer Genome Atlas (TCGA) related to Invasive Ductal Carcinoma (IDC) and Invasive Lobular Carcinoma (ILC). Pathway enrichment by Over Representation Analysis (ORA) and Gene Set Enrichment Analysis (GSEA) has been conducted with both features information from differential expression analysis or selected features from multi-block sPLS-DA methods. Then, comprehensive comparisons of enrichment results have been carried out by looking at classical enrichment analysis, probabilities pooling by Stouffer's Z scores method and pathways clustering in biological themes. Our work shows that ORA enrichment with selected sPLS-DA features and pathways probabilities pooling by Stouffer's method lead to enrichment maps highly associated to physiological knowledge of IDC or ILC phenotypes, better than ORA and GSEA with differential expression driven features.


2021 ◽  
Author(s):  
Ce Ji ◽  
Jingwei Dai ◽  
Zhen Wang ◽  
Xiangchen Hu ◽  
Youwei Kou

Abstract HtrA serine peptidase 4 (HTRA4), which belongs to the AB family of proteases/chapterones, participates in multiple signal pathways and plays an important regulatory role in some malignancies; however, its role in the prognosis and immune infiltrates of gastric cancer (GC) remains unclear. HTRA4 expression was thus investigated in tumor tissues, and its association with immune infiltrates was assessed, to determine its prognostic roles in GC patients. Data for patients with GC was collected from three GEO datasets. This study has investigated if high expression levels of HTRA4 are associated with a poor prognosis in GC patients, especially in T2,T3,N1,NI&N2&N3,M1,stage3 and HER2+ subgroups. HTRA4 was positively correlated with CD8+ T cells, CD4+ memory activated T cells, gamma delta T cells, and M2 macrophages in the GC microenvironment. Gene Ontology and Gene set Enrichment Analysis showed that HTRA4 was enriched in some immune-related pathways. High expression levels of HTRA4 were significantly correlated with tumors in the T stage, N stage, and clinical stage, as well as those of histological grade. In summary, HTRA4 was found to play a vital role in the progression of GC and may be a predictive biomarker for the survival of GC patients.


Sign in / Sign up

Export Citation Format

Share Document