scholarly journals Trophic, Chemo-Ecological and Sex-Specific Insights on the Relation Between Diplodus sargus (Linnaeus, 1758) and the Invasive Caulerpa cylindracea (Sonder, 1845)

2021 ◽  
Vol 8 ◽  
Author(s):  
Andrea Miccoli ◽  
Emanuele Mancini ◽  
Marco Boschi ◽  
Francesca Provenza ◽  
Veronica Lelli ◽  
...  

Biological invasions result in negative and unpredictable impacts on oceans worldwide. Non-indigenous macrophytes often synthesize secondary metabolites for defensive purposes and increased competition efficiency: this is the case of Caulerpa cylindracea, which has entered the Mediterranean Sea in 1990 and competed against local flora and fauna since. It was demonstrated that the white seabream Diplodus sargus (i) has included the algae into its diet, (ii) is subject to the peculiar Abnormally Tough Specimen (ATS) condition post-cooking, and (iii) suffers physiological and behavioral disturbances from caulerpin, one of the three major algal secondary metabolites. This paper confirms a feeding relationship between the fish and the algae, quantifies caulerpin accumulation in the liver, suggests a possible mollusk- and echinoderm-driven biomagnification, and highlights the fact that all ATS specimens were males. Multivariate analyses on a multi-biomarker panel reveals differential correlations to key cellular processes such as oxidative stress, metabolism, neurotoxicity, and lipid peroxidation as well as to condition indexes.

Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Monika Ďurfinová ◽  
Marta Brechtlová ◽  
Branislav Líška ◽  
Želmíra Barošková

Abstract3′,5′-cAMP plays an important role as a second messenger molecule controlling multiple cellular processes in the brain. Its levels are decreased by phosphodiesterases (PDEs), responsible for hydrolysis of intracellular cAMP. A part of the PDE activity is dependent on the effect of calcium, mediated by its binding to calmodulin. During oxidative stress, precisely these changes in calcium concentration are responsible for cell damage. We have examined the effects of oxidative stress conditions on the activity of PDE in rat brain homogenates. We found a different influence of activated lipid peroxidation conditions (Fe2+ with ascorbate and increased temperature) on the calcium-dependent and calcium-independent PDE activity. The inhibition of Ca2+-dependent PDE was observed, while Ca2+-independent PDE was not influenced. We assume that it might be the impact of lipid peroxidation products or any mechanism activated by the higher temperature on the interaction of the Ca2+-dependent isoform of PDE with the complex calcium-calmodulin. Another explanation might be that the formation of the functioning calcium-calmodulin complex is impossible in these conditions.


2019 ◽  
Vol 9 (6) ◽  
pp. 155-161
Author(s):  
Pare Dramane ◽  
N’do Jotham Yhi-pênê ◽  
Hilou Adama

Plants have always played an important role in health care in Africa. The stress, a situation of imbalance between oxidizing and antioxidant systems in favor of the prooxidants is responsible for the installation of several pathologies such as cancers, cardiovascular diseases, diabetes ... The objective of this study was to highlight the presence Secondary metabolites in C. acutangula extract and determine its antioxidant and anti-inflammatory potential. For the determination of the acute toxicity of the extract, a dose of 2000 mg / kg was administered to the NMRI Mouse. The methods of screening were used to detect secondary metabolites like tannins, steroids and terpen, flavonoids, coumarins. The antioxidant capacity was evaluated in vitro by determining the ability of the extract to inhibit lipid peroxidation, hydrogen peroxide, degradation of deoxyribose. The anti-inflammatory potential was evaluated on lipoxygenase and xanthine oxidase. Acute toxicity evaluated in NMRI mice showed that the ethanolic extract of C. acutangula show no toxicity. Tannins, steroids and terpen, flavonoids, coumarins have been detected in the extracts. C. acutangula showed good activity with an inhibition of 50.71 ± 2.51% at 100 μg / ml on lipid peroxidation, of 66.105 ± 1.26% on deoxyribose degradation and 8.625 ± 1.09% on hydrogen peroxide. It showed good activity on xanthine oxidase with an 81.5 ± 5.5% inhibition. For the effect on lipoxygenase it gave an inhibition of the enzyme at 43.11 ± 3.4%. This potential could be used in the fight against inflammatory diseases and that due to oxidative stress. Keywords: antioxidant, anti-inflammatory, oxidative stress, lipid peroxidation


2019 ◽  
Vol 69 (3) ◽  
pp. 433-441 ◽  
Author(s):  
Najeeb Ur Rehman ◽  
Samia Ahmed Al-Riyami ◽  
Hidayat Hussain ◽  
Amjad Ali ◽  
Abdul Latif Khan ◽  
...  

Abstract Oxidative stress is often considered detrimental for cellular processes and damaging for the lipid bi-layer. Counteracting such stresses with the aid of nature-based chemical constituents can be an ideal therapeutic approach. The current study aimed to investigate the chemical constituents of resins derived from the well-known Aloe vera and less known Commiphora mukul trees and their effect in mitigating the lipid peroxidation (LPO) process. The bio-guided isolation of bio-active fractions from both resins afforded 20 chemical constituents (17 from A. vera and 3 from C. mukul). These compounds belonged to anthraquinones, anthraquinone glycosides, quinones, coumarins, polypodane-type terpenoids and benzene derivatives. Major chemical constituents of the resins of A. vera and C. mukul were from the classes of quinones and terpenoids. Feroxidin (4, from A. vera) showed slightly higher inhibition (IC50 = 201.7 ± 0.9 µmol L−1) than myrrhanone C (18, from C. mukul: IC50 = 210.7 ± 0.0 µmol L−1) and methyl 3-(4-hydroxyphenyl) propionate from A. vera (13, IC50 = 232.9 ± 0.2 µmol L−1) compared to the other compounds. Structure-activity relationship showed that the existence of hydroxyl, methoxy and ether groups might play a major role in countering oxidative stress. To the best of our knowledge, anti-LPO activities of compounds 1–4, 14, 18 and 20 are reported for the first time. Such chemical constituents with high anti-lipid peroxidation activity could be helpful in synthesizing candidate drugs.


2020 ◽  
Vol 11 (10) ◽  
pp. 8547-8559
Author(s):  
Hongjing Zhao ◽  
Yu Wang ◽  
Mengyao Mu ◽  
Menghao Guo ◽  
Hongxian Yu ◽  
...  

Antibiotics are used worldwide to treat diseases in humans and other animals; most of them and their secondary metabolites are discharged into the aquatic environment, posing a serious threat to human health.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2011 ◽  
Vol 14 (3) ◽  
pp. 443-448 ◽  
Author(s):  
N. Kurhalyuk ◽  
H. Tkachenko ◽  
K. Pałczyńska

Resistance of erythrocytes from Brown trout (Salmo trutta m. trutta L.) affected by ulcerative dermal necrosis syndrome In the present work we evaluated the effect of ulcerative dermal necrosis (UDN) syndrome on resistance of erythrocytes to haemolytic agents and lipid peroxidation level in the blood from brown trout (Salmo trutta m. trutta L.). Results showed that lipid peroxidation increased in erythrocytes, as evidenced by high thiobarbituric acid reactive substance (TBARS) levels. Compared to control group, the resistance of erythrocytes to haemolytic agents was significantly lower in UDN-positive fish. Besides, UDN increased the percent of hemolysated erythrocytes subjected to the hydrochloric acid, urea and hydrogen peroxide. Results showed that UDN led to an oxidative stress in erythrocytes able to induce enhanced lipid peroxidation level, as suggested by TBARS level and decrease of erythrocytes resistance to haemolytic agents.


2018 ◽  
Vol 46 (1) ◽  
Author(s):  
Nermin Isik ◽  
Ozlem Derinbay Ekici ◽  
Ceylan Ilhan ◽  
Devran Coskun

 Background: Theileriosis is a tick-borne disease caused by Theileria strains of the protozoan species. Buparvaquone is the mostly preferred drug in the treatment theileriosis, while it is safety in sheep, has not been detailed investigated. It has been hypothesized that buparvaquone may show side effects and these effects may be defined some parameters measured from blood in sheep when it is used at the recommended dose and duration. The aim of this research was to determine the effect of buparvaquone on the blood oxidative status, cardiac, hepatic and renal damage and bone marrow function markers.Materials, Methods & Results: In this study, ten adult (> 2 years) Akkaraman rams were used. Healthy rams were placed in paddocks, provided water ad libitum, and fed with appropriate rations during the experiment. Buparvaquone was ad­ministered at the dose of 2.5 mg/kg (IM) intramuscularly twice at 3-day intervals. Blood samples were obtained before (0. h, Control) and after drug administration at 0.25, 0.5, 1, 2, 3, 4 and 5 days. The blood samples were transferred to gel tubes, and the sera were removed (2000 g, 15 min). During the study, the heart rate, respiratory rate, and body temperature were measured at each sampling time. In addition, the animals were clinically observed. Plasma oxidative status mark­ers (Malondialdehyde, total antioxidant status, catalase, glutathione peroxidase, superoxide dismutase), serum cardiac (Troponin I, creatine kinase-MBmass, lactate dehydrogenase), hepatic (Alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, gamma glutamyltransferase, total protein, albumin, globulin) and renal (Creatinine, blood urea nitrogen) damage markers and hemogram values (white blood cell, red blood cell, platelet, hemogram, hematocrit) were measured. Buparvaquone caused statistically significantly (P < 0.05) increases in the troponin I and blood urea nitrogen levels and fluctuations in alkaline phosphatase activity, but there was no any statistically significance difference determined in the other parameters.Discussion: In this study, buparvaquone was administered two times at a dose of 2.5 mg/kg (IM) at 3-day intervals. Al­though the result was not statistically significant (P > 0.05), it was determined that buparvaquone gradually increased the levels of the main oxidative stress marker, MDA, by approximately 2.8 fold. CAT and GPX levels were also found to have decreased by 2.2 fold. Buparvaquone may cause lipid peroxidation by producing free radicals. Some other antiprotozoal drugs may affect the oxidative status and may increase MDA level and decrease SOD level. In this study, MDA, which is an indicator of lipid peroxidation in vivo, was used to partially detect developing lipid peroxidation. Changes in the levels of reduced GPX and CAT enzymes could be attributed to their use in mediating the hydrogen peroxide detoxification mechanisms. The absence of significant changes in the TAS levels in this study suggests that buparvaquone may partially induce oxidative stress by producing hydrogen peroxide, but no significant changes occurred in the oxidative stress level because of the high antioxidant capacity of sheep. In this study, buparvaquone caused a statistically significant increase (P < 0.05) in the level of Tn-I, which is a marker of specific cardiac damage (P < 0.05), whereas there was no statistically (P > 0.05) significant increase in CK-MBmass. Tn-I and CK-MB levels, which are used to define heart damage in humans, have been successfully used to determine heart damage in sheep. In this research study, the statistically significant increases in Tn-I but not CK-MBmass levels could be considered indicative of mild cardiac damage.Keywords: ram, buparvaquone, safety.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Christina D’Agrosa ◽  
Charles L. Cai ◽  
Faisal Siddiqui ◽  
Karen Deslouches ◽  
Stephen Wadowski ◽  
...  

Abstract Background Neonatal intermittent hypoxia (IH) results in oxidative distress in preterm infants with immature antioxidant systems, contributing to lung injury. Coenzyme Q10 (CoQ10) and fish oil protect against oxidative injury. We tested the hypothesis that CoQ10 is more effective than fish oil for prevention of IH-induced lung injury in neonatal rats. Methods Newborn rats were exposed to two clinically relevant IH paradigms at birth (P0): (1) 50% O2 with brief hypoxia (12% O2); or (2) room air (RA) with brief hypoxia (12% O2), until P14 during which they were supplemented with daily oral CoQ10, fish oil, or olive oil from P0 to P14. Pups were studied at P14 or placed in RA until P21 with no further treatment. Lungs were assessed for histopathology and morphometry; biomarkers of oxidative stress and lipid peroxidation; and antioxidants. Results Of the two neonatal IH paradigms 21%/12% O2 IH resulted in the most severe outcomes, evidenced by histopathology and morphometry. CoQ10 was effective for preserving lung architecture and reduction of IH-induced oxidative stress biomarkers. In contrast, fish oil resulted in significant adverse outcomes including oversimplified alveoli, hemorrhage, reduced secondary crest formation and thickened septae. This was associated with elevated oxidants and antioxidants activities. Conclusions Data suggest that higher FiO2 may be needed between IH episodes to curtail the damaging effects of IH, and to provide the lungs with necessary respite. The negative outcomes with fish oil supplementation suggest oxidative stress-induced lipid peroxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 45
Author(s):  
Helena Beatriz Ferreira ◽  
Tânia Melo ◽  
Artur Paiva ◽  
Maria do Rosário Domingues

Rheumatoid arthritis (RA) is a highly debilitating chronic inflammatory autoimmune disease most prevalent in women. The true etiology of this disease is complex, multifactorial, and is yet to be completely elucidated. However, oxidative stress and lipid peroxidation are associated with the development and pathogenesis of RA. In this case, oxidative damage biomarkers have been found to be significantly higher in RA patients, associated with the oxidation of biomolecules and the stimulation of inflammatory responses. Lipid peroxidation is one of the major consequences of oxidative stress, with the formation of deleterious lipid hydroperoxides and electrophilic reactive lipid species. Additionally, changes in the lipoprotein profile seem to be common in RA, contributing to cardiovascular diseases and a chronic inflammatory environment. Nevertheless, changes in the lipid profile at a molecular level in RA are still poorly understood. Therefore, the goal of this review was to gather all the information regarding lipid alterations in RA analyzed by mass spectrometry. Studies on the variation of lipid profile in RA using lipidomics showed that fatty acid and phospholipid metabolisms, especially in phosphatidylcholine and phosphatidylethanolamine, are affected in this disease. These promising results could lead to the discovery of new diagnostic lipid biomarkers for early diagnosis of RA and targets for personalized medicine.


Sign in / Sign up

Export Citation Format

Share Document