scholarly journals Dietary Inulin Supplementation Modulates Short-Chain Fatty Acid Levels and Cecum Microbiota Composition and Function in Chickens Infected With Salmonella

2020 ◽  
Vol 11 ◽  
Author(s):  
Jiao Song ◽  
Qinghe Li ◽  
Nadia Everaert ◽  
Ranran Liu ◽  
Maiqing Zheng ◽  
...  

The current study investigated the effects of inulin on the gut microbiota, microbiome functions, and short-chain fatty acids (SCFAs) levels in specific pathogen-free (SPF) chickens infected with Salmonella enteritidis (SE). SPF Arbor Acres chickens (n = 240, 1-day-old) were divided into four groups: a control group (CON) fed a basal diet without inulin supplementation or SE infection, and three groups fed a basal diet supplemented with inulin 0, 0.5, and 1% (SE, 0.5%InSE, 1%InSE, respectively) up to 28-days-old, followed by SE challenge at 28 days of age. Cecal SCFA contents and microbiome composition and function were analyzed at 1-day post-infection. The results showed that SE infection significantly decreased cecal butyrate concentrations compared with the CON group (p < 0.05), while inulin supplementation reversed these changes compared with the SE group (p < 0.05). Inulin supplementation at 1% significantly increased the abundances of Lactobacillus and Streptococcus, and significantly decreased the abundances of Subdoligranulum and Sellimonas compared with the SE group (p < 0.05). The functional profiles of microbial communities based on metagenomic sequencing analysis showed that SE infection significantly increased the abundances of pathways related to carbohydrate metabolism, amino acid metabolism, energy metabolism, metabolism of cofactors and vitamins, and glycan biosynthesis and metabolism (p < 0.05), and significantly decreased the abundances of pathways related to nucleotide metabolism, translation, and replication and repair compared with the CON group (p < 0.05), and these effects were reversed by inulin supplementation (0.5 and 1%) (p < 0.05). In conclusion, inulin modulated the dysbiosis induced by SE infection via affecting SCFA metabolism and microbial functional profiles.

2021 ◽  
Author(s):  
Noel T. Mueller ◽  
Moira K. Differding ◽  
Mingyu Zhang ◽  
Nisa Maruthar ◽  
Stephen P Juraschek ◽  
...  

<b>Objective:</b> To determine the longer-term effects of metformin and behavioral weight loss on gut microbiota and SCFAs. <p><b>Methods: </b>We conducted a parallel-arm, randomized trial. We enrolled overweight/obese adults who had been treated for solid tumors but had no ongoing cancer treatment and randomized them (n=121) to: 1) metformin (up to 2000mg), 2) coach-directed behavioral weight loss, or 3) self-directed care (control) for 12 months. We collected stool and serum at baseline (n=114), 6 months (n=109) and 12 months (n=105). From stool, we extracted microbial DNA and conducted amplicon and metagenomic sequencing. We measured SCFAs and other biochemical parameters from fasting serum. </p> <p><b>Results: </b>Of the 121 participants, 79% were female, 46% were black, and the mean age was 60y. Only metformin intervention significantly altered microbiota composition. Compared to control, metformin increased <i>E. Coli</i> and <i>Ruminococcus torques</i> and decreased <i>Intestinibacter Bartletti</i> at both 6 and 12 months, and decreased the genus <i>Roseburia (genus)</i>, including <i>R. faecis</i> and <i>R. intestinalis,</i> at 12 months. Effects were similar when comparing metformin to the behavioral weight loss group. Metformin also altered 62 metagenomic functional pathways and increased butyrate, acetate, and valerate at 6 months. Behavioral weight loss vs. control did not significantly alter microbiota composition, but did increase acetate at 6 months. Increases in acetate were associated with decreases in fasting insulin.</p> <p><b>Conclusions:</b> Metformin, but not behavioral weight loss, impacted gut microbiota composition and function at 6 months and 12 months. Both metformin and behavioral weight loss altered 6-month SCFAs, including increasing acetate which correlated with improved insulin sensitivity.</p>


Diabetes Care ◽  
2021 ◽  
pp. dc202257
Author(s):  
Noel T. Mueller ◽  
Moira K. Differding ◽  
Mingyu Zhang ◽  
Nisa M. Maruthur ◽  
Stephen P. Juraschek ◽  
...  

2021 ◽  
Vol 99 (10) ◽  
Author(s):  
Xiaorong Yu ◽  
Chunsheng Fu ◽  
Zhenchuan Cui ◽  
Guangyong Chen ◽  
Yinglei Xu ◽  
...  

Abstract Constipation in gestating and lactating sows is common and the inclusion of dietary fiber may help to alleviate this problem. We investigated the effects of inulin (INU) and isomalto-oligosaccharide (IMO), two sources of soluble dietary fiber, on gastrointestinal motility-related hormones, short-chain fatty acids (SCFA), fecal microflora, and reproductive performance in pregnant sows. On day 64 of gestation, 30 sows were randomly divided into three groups and fed as follows: a basal diet, a basal diet with 0.5% INU, and a basal diet with 0.5% IMO. We found that INU and IMO significantly modulated the levels of gastrointestinal motility-related hormones, as evidenced by an increase in substance P (P &lt; 0.05), and a decrease in the vasoactive intestinal peptide concentrations (P &lt; 0.05), indicating the capacity of INU and IMO to alleviate constipation. Furthermore, IMO enhanced the concentrations of acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids in the feces (P &lt; 0.05). High-throughput sequencing showed that IMO and INU increased the fecal microflora α- and β-diversity (P &lt; 0.05). Methanobrevibacter was more abundant (P &lt; 0.05), whereas the richness of Turicibacter was lower in the INU and IMO groups than in the control group (P &lt; 0.05). In addition, IMO significantly increased litter size (P &lt; 0.05). Overall, our findings indicate that INU and IMO can relieve constipation, optimize intestinal flora, and promote reproductive performance in pregnant sows.


2021 ◽  
Author(s):  
Noel T. Mueller ◽  
Moira K. Differding ◽  
Mingyu Zhang ◽  
Nisa Maruthar ◽  
Stephen P Juraschek ◽  
...  

<b>Objective:</b> To determine the longer-term effects of metformin and behavioral weight loss on gut microbiota and SCFAs. <p><b>Methods: </b>We conducted a parallel-arm, randomized trial. We enrolled overweight/obese adults who had been treated for solid tumors but had no ongoing cancer treatment and randomized them (n=121) to: 1) metformin (up to 2000mg), 2) coach-directed behavioral weight loss, or 3) self-directed care (control) for 12 months. We collected stool and serum at baseline (n=114), 6 months (n=109) and 12 months (n=105). From stool, we extracted microbial DNA and conducted amplicon and metagenomic sequencing. We measured SCFAs and other biochemical parameters from fasting serum. </p> <p><b>Results: </b>Of the 121 participants, 79% were female, 46% were black, and the mean age was 60y. Only metformin intervention significantly altered microbiota composition. Compared to control, metformin increased <i>E. Coli</i> and <i>Ruminococcus torques</i> and decreased <i>Intestinibacter Bartletti</i> at both 6 and 12 months, and decreased the genus <i>Roseburia (genus)</i>, including <i>R. faecis</i> and <i>R. intestinalis,</i> at 12 months. Effects were similar when comparing metformin to the behavioral weight loss group. Metformin also altered 62 metagenomic functional pathways and increased butyrate, acetate, and valerate at 6 months. Behavioral weight loss vs. control did not significantly alter microbiota composition, but did increase acetate at 6 months. Increases in acetate were associated with decreases in fasting insulin.</p> <p><b>Conclusions:</b> Metformin, but not behavioral weight loss, impacted gut microbiota composition and function at 6 months and 12 months. Both metformin and behavioral weight loss altered 6-month SCFAs, including increasing acetate which correlated with improved insulin sensitivity.</p>


2018 ◽  
Vol 24 (27) ◽  
pp. 3223-3231 ◽  
Author(s):  
Luyao Li ◽  
Shiyao Xu ◽  
Tingting Guo ◽  
Shouliang Gong ◽  
Chuan Zhang

Objective: To investigate the effect of dapagliflozin on intestinal microflora in MafA-deficient mice using an animal model of diabetes. Methods: Male MafA-deficient mice were administered dapagliflozin (1.0 mg/kg/d) intragastrically for 6 weeks. Mouse body weights and fasting blood glucose levels were measured, and intestinal short-chain fatty acids were measured by gas chromatography. A series of methods was used to analyse the number of primary harmful bacteria in the faeces, and high-throughput sequencing was used to sequence the changes in intestinal flora. Results: The weight of the mice decreased after dapagliflozin gavage, and fasting blood glucose was significantly lower than that in the control group (P < 0.001). Acetic acid and butyric acid contents in the intestinal tracts of the mice increased, and the growth of harmful microorganisms, such as Clostridium perfringens, enterococci, Enterobacteriaceae, and intestinal enterococci, was inhibited. Blautia is a species found in the experimental group and was significantly different from the control and blank groups as determined by the LDA score from highthroughput sequencing. Conclusion: Dapagliflozin can reduce fasting blood glucose, decrease body weight, increase short-chain fatty acid content, regulate the intestinal microecological balance of the body and promote blood glucose and energy homeostasis.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1825
Author(s):  
Mohamed Zeineldin ◽  
Ameer Megahed ◽  
Benjamin Blair ◽  
Brian Aldridge ◽  
James Lowe

The gastrointestinal microbiome plays an important role in swine health and wellbeing, but the gut archaeome structure and function in swine remain largely unexplored. To date, no metagenomics-based analysis has been done to assess the impact of an early life antimicrobials intervention on the gut archaeome. The aim of this study was to investigate the effects of perinatal tulathromycin (TUL) administration on the fecal archaeome composition and diversity in suckling piglets using metagenomic sequencing analysis. Sixteen litters were administered one of two treatments (TUL; 2.5 mg/kg IM and control (CONT); saline 1cc IM) soon after birth. Deep fecal swabs were collected from all piglets on days 0 (prior to treatment), 5, and 20 post intervention. Each piglet’s fecal archaeome was composed of rich and diverse communities that showed significant changes over time during the suckling period. At the phylum level, 98.24% of the fecal archaeome across all samples belonged to Euryarchaeota. At the genus level, the predominant archaeal genera across all samples were Methanobrevibacter (43.31%), Methanosarcina (10.84%), Methanococcus (6.51%), and Methanocorpusculum (6.01%). The composition and diversity of the fecal archaeome between the TUL and CONT groups at the same time points were statistically insignificant. Our findings indicate that perinatal TUL metaphylaxis seems to have a minimal effect on the gut archaeome composition and diversity in sucking piglets. This study improves our current understanding of the fecal archaeome structure in sucking piglets and provides a rationale for future studies to decipher its role in and impact on host robustness during this critical phase of production.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
B Verhaar ◽  
D Collard ◽  
A Prodan ◽  
J.H.M Levels ◽  
A.H Zwinderman ◽  
...  

Abstract Background Gut microbiome composition is shaped by a combination of host genetic make-up and dietary habits. In addition, large ethnic differences exist in microbiome composition. Several studies in humans and animals have shown that differences in gut microbiota and its metabolites, including short chain fatty acids (SCFA), are associated with blood pressure (BP). We hypothesized that gut microbiome composition and its metabolites may be differently associated with BP across ethnic groups. Purpose To investigate associations of gut microbiome composition and fecal SCFA levels with BP across different ethnic groups. Methods We assessed the association between gut microbiome composition and office BP among 4672 subjects (mean age 49.8±11.7 years, 52%F) of 6 different ethnic groups participating in the HELIUS study. Gut microbiome composition was determined using 16S rRNA sequencing. Associations between microbiome composition and blood pressure were assessed using machine learning prediction models. The resulting best predictors were correlated with BP using Spearman's rank correlations. Fecal SCFA levels were measured with high-performance liquid chromatography in an age- and body mass index (BMI)-matched subgroup of 200 participants with either extreme low or high systolic BP. Differences in abundances of best predictors and fecal SCFA levels between high and low BP groups were assessed with Mann-Whitney U tests. Results Gut microbiome composition explained 4.4% of systolic BP variance. Best predictors for systolic BP included Roseburia spp. (ρ −0.15, p&lt;0.001), Clostridium spp. (ρ −0.14, p&lt;0.001), Romboutsia spp. (ρ −0.10, p&lt;0.001), and Ruminococceae spp. (ρ −0.15, p&lt;0.001) (Figure 1). Explained variance of the microbiome composition was highest in Dutch subjects (4.8%), but very low in African Surinamese, Ghanaian, and Turkish ethnic groups (ranging from 0–0.77%) Hence, we selected only participants with Dutch ethnicity for the matched subgroup. Participants with high BP had lower abundance of Roseburia hominis (p&lt;0.01) and Roseburia spp. (p&lt;0.05) compared to participants with low BP. However, fecal acetate (p&lt;0.05) and propionate (p&lt;0.01) levels were higher in participants with high BP. Conclusions In this cross-sectional study, gut microbiome composition was moderately associated with BP. Associations were strongly divergent between ethnic groups, with strongest associations in Dutch participants. Intriguingly, while Dutch participants with high BP had lower abundances of several SCFA-producing microbes, they had higher fecal SCFA levels. Intervention studies with SCFAs could provide more insight in the effects of these metabolites on BP. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): The Academic Medical Center (AMC) of Amsterdam and the Public Health Service of Amsterdam (GGD Amsterdam) provided core financial support for HELIUS. The HELIUS study is also funded by research grants of the Dutch Heart Foundation (Hartstichting; grant no. 2010T084), the Netherlands Organization for Health Research and Development (ZonMw; grant no. 200500003), the European Integration Fund (EIF; grant no. 2013EIF013) and the European Union (Seventh Framework Programme, FP-7; grant no. 278901).


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 339-339
Author(s):  
Mariya Miroshnikova ◽  
Elena Miroshnikova ◽  
Alexey Sizentsov ◽  
Azamat Arinzhanov ◽  
Yuliya Kilyakova

Abstract One of the most promising ways to improve the effectiveness of fish farming is the use of phytobiotics in the diet of fish. On this basis, we set the aim to evaluate the effectiveness of the Quercus cortex extract in the concentration of 1 mg/kg on biological features and the productivity of carp. The object of the research was yearling carp grown in the conditions of Orenburgskiy Osetr LLC. Two groups (n = 20) were formed by the method of analogs to conduct the research. After the adaption period (7 days), the groups came to the experimental period (35 days). The feed KRK-110–1 produced by PJSC Orenburg Combined-Feed Plant was used as the basal diet. The live fish were monitored weekly by individual weighing during the accounting period. The elemental composition was determined by the method of atomic emission and mass spectrometry (ICP-AES and ICP-MS). The microflora analysis was carried out by the method of metagenomic sequencing. The use of the Quercus cortex extract in the diet in the studied concentration increased body weight by 15.1% (P ≤ 0.05) compared to the control group. There was experimentally revealed a stimulating effect on the population growth of individual representatives of the microbiome (Luteolibacter, Lactococcus) (P ≤ 0.05) without significantly changing the overall picture of the microbial profile, which, in our view, affects the metabolic processes, in particular, by stimulating the formation of biologically available forms of essential elements and their subsequent accumulation in the tissues of the studied fish. Thus, the experimental group found: (against the background of an increase in the total mineralization (ash residue) by 17.95 % (P ≤ 0.05)) the calcium content increased by 133.9% (P ≤ 0.05), phosphorus by 83% (P ≤ 0.05), iron by 337.7% (P ≤ 0.05), respectively, in comparison with the control group.


2018 ◽  
Vol 53 (4) ◽  
pp. 504-513
Author(s):  
Rafaela Scalise Xavier de Freitas ◽  
Delci de Deus Nepomuceno ◽  
Elisa Cristina Modesto ◽  
Tatiana Pires Pereira ◽  
João Carlos de Carvalho Almeida ◽  
...  

Abstract: The objective of this work was to evaluate the effect of the addition of the methanolic extract of Urochloa humidicola at four different concentrations (0, 75, 150, and 250 g L-1) on the in vitro rumen fermentation of Urochloa brizantha. The following variables were evaluated by the in vitro gas production technique: kinetic parameters; rumen degradation of dry matter; and production and concentration of the methane and carbon dioxide gases and of the acetate, propionate, and butyrate short-chain fatty acids. The addition of the methanolic extract reduces the production of gases generated from the degradation of non-fibrous carbohydrates (fraction A) in 9.55, 6.67, and 13.33%, respectively, at the concentrations of 75, 150, and 250 g L-1, compared with the control group, but it negatively affects the degradation of the dry matter of U. brizantha at the concentrations of 150 and 250 g L-1. The extract shows negative quadratic effect on gas production during 12 and 24 hours of U. brizantha incubation. The extract of U. humidicola reduces methane production and increases short-chain fatty acid production at the concentrations of 75, 150, and 250 g L-1.


Sign in / Sign up

Export Citation Format

Share Document