scholarly journals High Expression of Glycolytic Genes in Clinical Glioblastoma Patients Correlates With Lower Survival

2021 ◽  
Vol 8 ◽  
Author(s):  
Kimberly M Stanke ◽  
Carrick Wilson ◽  
Srivatsan Kidambi

Glioblastoma (GBM), the most aggressive brain tumor, is associated with a median survival at diagnosis of 16–20 months and limited treatment options. The key hallmark of GBM is altered tumor metabolism and marked increase in the rate of glycolysis. Aerobic glycolysis along with elevated glucose consumption and lactate production supports rapid cell proliferation and GBM growth. In this study, we examined the gene expression profile of metabolic targets in GBM samples from patients with lower grade glioma (LGG) and GBM. We found that gene expression of glycolytic enzymes is up-regulated in GBM samples and significantly associated with an elevated risk for developing GBM. Our findings of clinical outcomes showed that GBM patients with high expression of HK2 and PKM2 in the glycolysis related genes and low expression of genes involved in mitochondrial metabolism-SDHB and COX5A related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), respectively, was associated with poor patient overall survival. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in GBM compared to LGG but was lower compared to normal brain. The fact that in GBM the expression levels of TCA cycle and OXPHOS-related genes are higher than those in LGG patients suggests the metabolic shift in GBM cells when progressing from LGG to GBM. These results are an important step forward in our understanding of the role of metabolic reprogramming in glioma as drivers of the tumor and could be potential prognostic targets in GBM therapies.

2021 ◽  
Author(s):  
Kimberly M Stanke ◽  
Carrick Wilson ◽  
Srivatsan Kidambi

Glioblastoma (GBM), the most aggressive brain tumor, is associated with a median survival at diagnosis of 16-20 months and limited treatment options. The key hallmark of GBM is altered tumor metabolism and marked increase in the rate of glycolysis. Aerobic glycolysis along with elevated glucose consumption and lactate production supports rapid cell proliferation and GBM growth. In this study, we examined the gene expression profile of metabolic targets in GBM samples from patients with low grade glioma (LGG) and GBM. We found that gene expression of glycolytic enzymes is up-regulated in GBM samples and significantly associated with an elevated risk for developing GBM. Our findings of clinical outcomes showed that GBM patients with high expression of HK2 and PKM2 in the glycolysis related genes and low expression of genes involved in mitochondrial metabolism-SDHB and COX5A related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS), respectively, was associated with poor patient overall survival. Surprisingly, expression levels of genes involved in mitochondrial oxidative metabolism are markedly increased in GBM compared to LGG but was lower compared to normal brain. The fact that in GBM the expression levels of TCA cycle and OXPHOS-related genes are higher than those in LGG patients suggests the metabolic shift in GBM cells when progressing from LGG to GBM. These results are an important step forward in our understanding of the role of metabolic reprogramming in glioma as drivers of the tumor and could be potential prognostic targets in GBM therapies.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Yollanda E. Moreira Franco ◽  
Maria Jose Alves ◽  
Miyuki Uno ◽  
Isabele Fattori Moretti ◽  
Marina Trombetta-Lima ◽  
...  

Abstract Background Glioblastoma is the most frequent and high-grade adult malignant central nervous system tumor. The prognosis is still poor despite the use of combined therapy involving maximal surgical resection, radiotherapy, and chemotherapy. Metabolic reprogramming currently is recognized as one of the hallmarks of cancer. Glutamine metabolism through glutaminolysis has been associated with tumor cell maintenance and survival, and with antioxidative stress through glutathione (GSH) synthesis. Methods In the present study, we analyzed the glutaminolysis-related gene expression levels in our cohort of 153 astrocytomas of different malignant grades and 22 non-neoplastic brain samples through qRT-PCR. Additionally, we investigated the protein expression profile of the key regulator of glutaminolysis (GLS), glutamate dehydrogenase (GLUD1), and glutamate pyruvate transaminase (GPT2) in these samples. We also investigated the glutathione synthase (GS) protein profile and the GSH levels in different grades of astrocytomas. The differential gene expressions were validated in silico on the TCGA database. Results We found an increase of glutaminase isoform 2 gene (GLSiso2) expression in all grades of astrocytoma compared to non-neoplastic brain tissue, with a gradual expression increment in parallel to malignancy. Genes coding for GLUD1 and GPT2 expression levels varied according to the grade of malignancy, being downregulated in glioblastoma, and upregulated in lower grades of astrocytoma (AGII–AGIII). Significant low GLUD1 and GPT2 protein levels were observed in the mesenchymal subtype of GBM. Conclusions In glioblastoma, particularly in the mesenchymal subtype, the downregulation of both genes and proteins (GLUD1 and GPT2) increases the source of glutamate for GSH synthesis and enhances tumor cell fitness due to increased antioxidative capacity. In contrast, in lower-grade astrocytoma, mainly in those harboring the IDH1 mutation, the gene expression profile indicates that tumor cells might be sensitized to oxidative stress due to reduced GSH synthesis. The measurement of GLUD1 and GPT2 metabolic substrates, ammonia, and alanine, by noninvasive MR spectroscopy, may potentially allow the identification of IDH1mut AGII and AGIII progression towards secondary GBM.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 3018
Author(s):  
Marek Samec ◽  
Alena Liskova ◽  
Lenka Koklesova ◽  
Kevin Zhai ◽  
Elizabeth Varghese ◽  
...  

Metabolic reprogramming characterized by alterations in nutrient uptake and critical molecular pathways associated with cancer cell metabolism represents a fundamental process of malignant transformation. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone secreted by the pineal gland. Melatonin primarily regulates circadian rhythms but also exerts anti-inflammatory, anti-depressant, antioxidant and anti-tumor activities. Concerning cancer metabolism, melatonin displays significant anticancer effects via the regulation of key components of aerobic glycolysis, gluconeogenesis, the pentose phosphate pathway (PPP) and lipid metabolism. Melatonin treatment affects glucose transporter (GLUT) expression, glucose-6-phosphate dehydrogenase (G6PDH) activity, lactate production and other metabolic contributors. Moreover, melatonin modulates critical players in cancer development, such as HIF-1 and p53. Taken together, melatonin has notable anti-cancer effects at malignancy initiation, progression and metastasing. Further investigations of melatonin impacts relevant for cancer metabolism are expected to create innovative approaches supportive for the effective prevention and targeted therapy of cancers.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5557
Author(s):  
Alexandre Vallée ◽  
Yves Lecarpentier ◽  
Jean-Noël Vallée

The canonical WNT/β-catenin pathway is upregulated in cancers and plays a major role in proliferation, invasion, apoptosis and angiogenesis. Nuclear β-catenin accumulation is associated with cancer. Hypoxic mechanisms lead to the activation of the hypoxia-inducible factor (HIF)-1α, promoting glycolytic and energetic metabolism and angiogenesis. However, HIF-1α is degraded by the HIF prolyl hydroxylase under normoxia, conditions under which the WNT/β-catenin pathway can activate HIF-1α. This review is therefore focused on the interaction between the upregulated WNT/β-catenin pathway and the metabolic processes underlying cancer mechanisms under normoxic conditions. The WNT pathway stimulates the PI3K/Akt pathway, the STAT3 pathway and the transduction of WNT/β-catenin target genes (such as c-Myc) to activate HIF-1α activity in a hypoxia-independent manner. In cancers, stimulation of the WNT/β-catenin pathway induces many glycolytic enzymes, which in turn induce metabolic reprogramming, known as the Warburg effect or aerobic glycolysis, leading to lactate overproduction. The activation of the Wnt/β-catenin pathway induces gene transactivation via WNT target genes, c-Myc and cyclin D1, or via HIF-1α. This in turn encodes aerobic glycolysis enzymes, including glucose transporter, hexokinase 2, pyruvate kinase M2, pyruvate dehydrogenase kinase 1 and lactate dehydrogenase-A, leading to lactate production. The increase in lactate production is associated with modifications to the tumor microenvironment and tumor growth under normoxic conditions. Moreover, increased lactate production is associated with overexpression of VEGF, a key inducer of angiogenesis. Thus, under normoxic conditions, overstimulation of the WNT/β-catenin pathway leads to modifications of the tumor microenvironment and activation of the Warburg effect, autophagy and glutaminolysis, which in turn participate in tumor growth.


2020 ◽  
Author(s):  
Shahan Mamoor

Glioblastoma multiforme is an aggressive brain cancer with few treatment options and poor survival outcomes (1, 2). We used a public dataset (3) containing the gene expression information of tumors from 17 patients diagnosed with glioblastoma and compared it to the gene expression information from the non-cancerous, healthy brain tissue from 8 individuals as a reference control, to understand what is most different between the transcriptional behavior of glioblastoma tumors relative to the tissue it arises from. We found that protein phosphatase PPM1B and three protein phosphatase regulatory subunits were among the genes whose expression was most different between glioblastoma tumors and “normal” brain tissue. The fact that multiple phosphatase regulatory genes are expressed at significantly lower levels in glioblastoma tumors suggests that alteration of substrate phosphorylation might be an important event in glioblastoma formation, maintenance or progression.


2021 ◽  
Vol 12 (11) ◽  
Author(s):  
Yi-Ta Hsieh ◽  
Hsi-Feng Tu ◽  
Muh-Hwa Yang ◽  
Yi-Fen Chen ◽  
Xiang-Yun Lan ◽  
...  

AbstractMitochondrial transcriptional factor A (TFAM) acts as a key regulatory to control mitochondrial DNA (mtDNA); the impact of TFAM and mtDNA in modulating carcinogenesis is controversial. Current study aims to define TFAM mediated regulations in head and neck cancer (HNC). Multifaceted analyses in HNC cells genetically manipulated for TFAM were performed. Clinical associations of TFAM and mtDNA encoded Electron Transport Chain (ETC) genes in regulating HNC tumourigenesis were also examined in HNC specimens. At cellular level, TFAM silencing led to an enhanced cell growth, motility and chemoresistance whereas enforced TFAM expression significantly reversed these phenotypic changes. These TFAM mediated cellular changes resulted from (1) metabolic reprogramming by directing metabolism towards aerobic glycolysis, based on the detection of less respiratory capacity in accompany with greater lactate production; and/or (2) enhanced ERK1/2-Akt-mTORC-S6 signalling activity in response to TFAM induced mtDNA perturbance. Clinical impacts of TFAM and mtDNA were further defined in carcinogen-induced mouse tongue cancer and clinical human HNC tissues; as the results showed that TFAM and mtDNA expression were significantly dropped in tumour compared with their normal counterparts and negatively correlated with disease progression. Collectively, our data uncovered a tumour-suppressing role of TFAM and mtDNA in determining HNC oncogenicity and potentially paved the way for development of TFAM/mtDNA based scheme for HNC diagnosis.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Noritaka Saeki ◽  
Yuuki Imai

Abstract Background Macrophages adapt to microenvironments, and change metabolic status and functions to regulate inflammation and/or maintain homeostasis. In joint cavities, synovial macrophages (SM) and synovial fibroblasts (SF) maintain homeostasis. However, under inflammatory conditions such as rheumatoid arthritis (RA), crosstalk between SM and SF remains largely unclear. Methods Immunofluorescent staining was performed to identify localization of SM and SF in synovium of collagen antibody induced arthritis (CAIA) model mice and normal mice. Murine arthritis tissue-derived SM (ADSM), arthritis tissue-derived SF (ADSF) and normal tissue-derived SF (NDSF) were isolated and the purity of isolated cells was examined by RT-qPCR and flow cytometry analysis. RNA-seq was conducted to reveal gene expression profile in ADSM, NDSF and ADSF. Cellular metabolic status and expression levels of metabolic genes and inflammatory genes were analyzed in ADSM treated with ADSM-conditioned medium (ADSM-CM), NDSF-CM and ADSF-CM. Results SM and SF were dispersed in murine hyperplastic synovium. Isolations of ADSM, NDSF and ADSF to analyze the crosstalk were successful with high purity. From gene expression profiles by RNA-seq, we focused on secretory factors in ADSF-CM, which can affect metabolism and inflammatory activity of ADSM. ADSM exposed to ADSF-CM showed significantly upregulated glycolysis and mitochondrial respiration as well as glucose and glutamine uptake relative to ADSM exposed to ADSM-CM and NDSF-CM. Furthermore, mRNA expression levels of metabolic genes, such as Slc2a1, Slc1a5, CD36, Pfkfb1, Pfkfb3 and Irg1, were significantly upregulated in ADSM treated with ADSF-CM. Inflammation marker genes, including Nos2, Tnf, Il-1b and CD86, and the anti-inflammatory marker gene, Il-10, were also substantially upregulated by ADSF-CM. On the other hand, NDSF-CM did not affect metabolism and gene expression in ADSM. Conclusions These findings suggest that crosstalk between SM and SF under inflammatory conditions can induce metabolic reprogramming and extend SM viability that together can contribute to chronic inflammation in RA.


2015 ◽  
Vol 309 (6) ◽  
pp. F492-F498 ◽  
Author(s):  
Vicki J. Hwang ◽  
Jeffrey Kim ◽  
Amy Rand ◽  
Chaozhe Yang ◽  
Steve Sturdivant ◽  
...  

Since polycystic kidney disease (PKD) was first noted over 30 years ago to have neoplastic parallels, there has been a resurgent interest in elucidating neoplasia-relevant pathways in PKD. Taking a nontargeted metabolomics approach in the B6(Cg)- Cys1 cpk/J ( cpk) mouse model of recessive PKD, we have now characterized metabolic reprogramming in these tissues, leading to a glutamine-dependent TCA cycle shunt toward total 2-hydroxyglutarate (2-HG) production in cpk compared with B6 wild-type kidney tissue. After confirmation of increased 2-HG expression in immortalized collecting duct cpk cells as well as in human autosomal recessive PKD tissue using targeted analysis, we show that the increase in 2-HG is likely due to glutamine-sourced α-ketoglutarate. In addition, cpk cells require exogenous glutamine for growth such that inhibition of glutaminase-1 decreases cell viability as well as proliferation. This study is a demonstration of the striking parallels between recessive PKD and cancer metabolism. Our data, once confirmed in other PKD models, suggest that future therapeutic approaches targeting this pathway, such as using glutaminase inhibitors, have the potential to open novel treatment options for renal cystic disease.


2020 ◽  
Author(s):  
Xue qaing Deng ◽  
Jianyong Deng ◽  
Xuan Yi ◽  
Yeqing Zou ◽  
Liang Hao

Abstract Background Osteosarcoma (OS) is a malignant bone tumour that exhibits a high mortality. While tumours thrive in a state of malnutrition, the mechanism by which OS cells adapt to metabolic stress through metabolic reprogramming remains unclear. Methods We analysed the expression of ROCK2 in osteosarcoma patients by RT-qPCR and Western blot. Cell proliferation, and colony formation were analysed using CCK8, EdU assays and colony formation assays. The level of Cell glycolysis was detected by glucose-6 phosphate, glucose consumption, lactate production and ATP levels. Results Herein, our study showed that ROCK2 expression in OS was higher than in adjacent tissues. Functional assays have demonstrated that ROCK2 contributes to the growth of OS cells by inducing aerobic glycolysis. The current study revealed that ROCK2 knockdown decreased the levels of mitochondrial hexokinase II (HKII). And also indicated that ROCK2 served as a key enzyme in glycolysis and that it served an important role in tumour growth and metastasis. A significant positive correlation was identified between the mRNA and protein expressions of ROCK2 and HKII, further demonstrating that ROCK2-induced glycolysis and proliferation was dependent on HKII in OS cells. Mechanistically, ROCK2 promotes HKII expression by activating the phospho-PI3K/AKT signalling pathway. Conclusions Taken together, the results of the current study linked the two drivers of OS growth and aerobic glycolysis, and identified a new mechanism of ROCK2 control in OS.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 1480-1480
Author(s):  
Anne-Sofie Skou ◽  
Kristian Juul-Dam ◽  
Maria Hansen ◽  
Anni Aggerholm ◽  
Birgitte Lausen ◽  
...  

Abstract Background: Even though children with acute myeloid leukemia (AML) receive a very intensive chemotherapy and most achieve a complete remission (CR) ~30% of patients suffer from relapse. Post-treatment monitoring of measurable residual disease (MRD) can allow detection of a re-emerging leukemic clone several months before clinical relapse, and studies are in progress that aim at treating children with a molecular relapse. Specific genetic aberrations can be used for disease monitoring after therapy completion, but even though oncogenic fusion transcripts are more common in childhood than adult AML, NPM1 mutation is much rarer and consequently MRD measurements based on these aberrations are clinically applicable in only ~40% of childhood AML patients. Thus, a considerable fraction of patients do not have a suitable leukemia-specific molecular MRD target, but genes with an abnormally high expression in the leukemic cells might be candidate MRD targets in those patients. WT1 overexpression in childhood AML is well described, and if distinctly overexpressed at diagnosis, serves as a suitable MRD target in a large proportion of patients. Gene expression profiling has identified several other genes with an abnormally high expression in the leukemic blasts compared to normal hematopoietic cells. We investigated the applicability of 4 leukemia-associated genes (PRAME, GAGED2, ST18, SPAG6) as targets for early detection of relapse in peripheral blood (PB) in a Danish cohort of childhood AML patients, defined child-specific reference values of gene expression based on a large material of PB and BM samples from hematologically healthy children, and investigated gene expression levels under the presence of infection. Methods: We investigated the expression of 4 leukemia-associated genes (PRAME, GAGED2, ST18, SPAG6) in hematologically healthy children (n=53) and during suspected infection in febrile but otherwise healthy children (n=90). Gene expression in de novo AML at diagnosis (n=50) and during follow-up (n=20) was compared with child-specific reference values. We defined the 95th percentile of expression levels in hematologically healthy children as the upper limit of normal expression. RT-qPCR analyses were performed in compliance with EAC protocols and due to concordant qPCR efficiencies the ΔΔCq method for relative quantification could be applied. Results: At AML diagnosis, 64% had high expression of at least 1 of the 4 genes defined as >20-fold overexpression compared to hematologically healthy children. Nine out of 10 patients (90%) without established molecular MRD targets or high WT1 expression had high expression of at least 1 of the 4 genes. All 7 children with t(9;11) had GAGED2>1000-fold overexpressed. Gene expression was quantified in 99 PB samples (163 RT-qPCR analyses) during follow-up in 20 patients with distinct overexpression at diagnosis. All 10 patients with PB sampling performed within 100 days of disease recurrence displayed expression above normal by a median of 1.6 months (range 0.5-6 months) before hematological relapse. Patients with CBF-AML had a significantly longer interval between molecular relapse and hematological relapse than patients with non-CBF-AML (2.5 months (range 0.8-6 months) vs. 0.9 months (range 0.5-2 months), p=0.047). One patient with PB sampling performed only once at 119 days prior to hematological relapse did not show any molecular evidence of disease recurrence before hematological relapse. Only 1 of 96 (1%) post-therapy follow-up analyses performed in 9 patients in continuous CR for >5 years after diagnosis had expression above normal. In this case, a 9-year-old girl in continuous CR had an increase in ST18 expression, however the increase was transient and returned to normal level in the following samples. We found no clinically relevant influence of fever on gene expression levels, except for GAGED2, where 21% of febrile children had expression above normal. Conclusions: Sequential post-therapy monitoring of overexpressed genes in PB can predict relapse in childhood AML patients and facilitates molecular MRD monitoring in 90% of patients without a leukemia-specific target or WT1 overexpression. Frequent PB sampling (every 4-6 weeks) is necessary to detect an upcoming relapse, however in the post-treatment follow-up setting PB serves as an attractive and easily accessible source of preference compared to BM aspiration. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document