scholarly journals Mitochondrial Dynamics: A Potential Therapeutic Target for Ischemic Stroke

2021 ◽  
Vol 13 ◽  
Author(s):  
Xiangyue Zhou ◽  
Hanmin Chen ◽  
Ling Wang ◽  
Cameron Lenahan ◽  
Lifei Lian ◽  
...  

Stroke is one of the leading causes of death and disability worldwide. Brain injury after ischemic stroke involves multiple pathophysiological mechanisms, such as oxidative stress, mitochondrial dysfunction, excitotoxicity, calcium overload, neuroinflammation, neuronal apoptosis, and blood-brain barrier (BBB) disruption. All of these factors are associated with dysfunctional energy metabolism after stroke. Mitochondria are organelles that provide adenosine triphosphate (ATP) to the cell through oxidative phosphorylation. Mitochondrial dynamics means that the mitochondria are constantly changing and that they maintain the normal physiological functions of the cell through continuous division and fusion. Mitochondrial dynamics are closely associated with various pathophysiological mechanisms of post-stroke brain injury. In this review, we will discuss the role of the molecular mechanisms of mitochondrial dynamics in energy metabolism after ischemic stroke, as well as new strategies to restore energy homeostasis and neural function. Through this, we hope to uncover new therapeutic targets for the treatment of ischemic stroke.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
M. Jelinek ◽  
M. Jurajda ◽  
K. Duris

This review focuses on the problem of oxidative stress in early brain injury (EBI) after spontaneous subarachnoid hemorrhage (SAH). EBI involves complex pathophysiological mechanisms, including oxidative stress. In the first section, we describe the main sources of free radicals in EBI. There are several sources of excessive generation of free radicals from mitochondrial free radicals’ generation and endoplasmic reticulum stress, to hemoglobin and enzymatic free radicals’ generation. The second part focuses on the disruption of antioxidant mechanisms in EBI. The third section describes some newly found molecular mechanisms and pathway involved in oxidative stress after EBI. The last section is dedicated to the pathophysiological mechanisms through which free radicals mediate early brain injury.


2021 ◽  
Vol 28 ◽  
Author(s):  
Lucas Alexandre Santos Marzano ◽  
Fabyolla Lúcia Macedo de Castro ◽  
Caroline Amaral Machado ◽  
João Luís Vieira Monteiro de Barros ◽  
Thiago Macedo e Cordeiro ◽  
...  

: Traumatic brain injury (TBI) is a serious cause of disability and death among young and adult individuals, displaying complex pathophysiology including cellular and molecular mechanisms that are not fully elucidated. Many experimental and clinical studies investigated the potential relationship between TBI and the process by which neurons are formed in the brain, known as neurogenesis. Currently, there are no available treatments for TBI’s long-term consequences being the search for novel therapeutic targets, a goal of highest scientific and clinical priority. Some studies evaluated the benefits of treatments aimed at improving neurogenesis in TBI. In this scenario, herein, we reviewed current pre-clinical studies that evaluated different approaches to improving neurogenesis after TBI while achieving better cognitive outcomes, which may consist in interesting approaches for future treatments.


2015 ◽  
Author(s):  
◽  
Shanyan Chen

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] Stroke ranks fourth among all causes of death, and acute ischemic stroke is the most common form. The neurovascular unit (NVU) describes a basic functional structure in the brain and is primarily composed of endothelial cells, pericytes, astrocytes, microglia and neurons. The dynamic structure of the NVU is highly regulated due to interactions between different cells and extracellular matrix (ECM) components. Proteolysis of the ECM by matrix metalloproteinases (MMPs), especially MMP-9, plays an important role in the pathophysiology of cerebral ischemia and administration of tissue plasminogen activator (tPA). The activation of gelatinases (MMP-2/9) is considered a key mechanism involved in the impairment of NVU. The overall goal of this research project is to examine the role of MMP-9 in the neurovascular impairment after ischemic stroke in mice. In this project, we implemented a new strategy using gelatinase-activatable cell-penetrating peptides (ACPPs) tagged with fluorescence and/or gadolinium-based contrast agents to investigate proteolysis of gelatinases as surrogate markers of neurovascular integrity. We presented evidence that the combination of a sensitive fluorescent chromatophore and MRI contrast enhancement agent can be used to monitor gelatinase activity and its distribution in cultured neurons as well as in mice after focal cerebral ischemia. Detection of the activity of gelatinases in vivo using ACPPs could provide insights into the underlying mechanism for gelatinase proteolysis that mediate ischemia-related neurovascular impairment. We also applied a two-dimensional (2D) gelatin zymography technique that combines isoelectric focusing (IEF) with zymographic electrophoresis. We demonstrated that the 2D zymography approach can improve separation of different isoforms of gelatinases in both in vitro and in vivo conditions. 2D zymography is an effective method to separate posttranslational modification isoforms of gelatinases and to identify modifications that regulate their enzymatic activity in acute brain injuries. In work that follows, we used a fibrin-rich blood clot to occlude the middle cerebral artery (MCA) in mice as a model to represent the critical thromboembolic features of ischemic stroke in humans. In this study, we evaluated effects of SB-3CT, a mechanism-based inhibitor selective for gelatinases. We demonstrated MMP-9 activation and neurovasculature impairment in this stroke model, and showed the ability of SB-3CT to inhibit MMP-9 activity in vivo, which in turn resulted in maintenance of laminin, antagonism of pericyte contraction and loss, preservation of laminin-positive pericytes and endothelial cells, and thus rescuing neurons from apoptosis and preventing intracerebral hemorrhage. We further demonstrated that SB-3CT/tPA combined treatment could attenuate MMP-9 -- mediated degradation of endothelial laminin, impairment of endothelial cells, and decrease of caveolae -- mediated transcytosis. Early inhibition of MMP-9 proteolysis by SB-3CT decreased brain damage, reduced BBB disruption, and prevented hemorrhagic transformation after delayed tPA treatment. Therefore usage of SB-3CT will be helpful in accessing combination therapy with tPA in ischemic stroke. Results from these studies indicate the important role of MMP-9 in cerebral ischemia and thus the need for further studies to explore the molecular mechanisms underlying its activation and regulation. Results further demonstrated that the combined use of MMP-9 inhibitor with tPA may extend tPA therapeutic window for mitigating stroke damage.


Stroke ◽  
2019 ◽  
Vol 50 (2) ◽  
pp. 469-477 ◽  
Author(s):  
Candela Diaz-Cañestro ◽  
Martin F. Reiner ◽  
Nicole R. Bonetti ◽  
Luca Liberale ◽  
Mario Merlini ◽  
...  

Background and Purpose— Inflammation is a major pathogenic component of ischemia/reperfusion brain injury, and as such, interventions aimed at inhibiting inflammatory mediators promise to be effective strategies in stroke therapy. JunD—a member of the AP-1 (activated protein-1) family of transcription factors—was recently shown to regulate inflammation by targeting IL (interleukin)-1β synthesis and macrophage activation. The purpose of the present study was to assess the role of JunD in ischemia/reperfusion-induced brain injury. Methods— WT (wild type) mice randomly treated with either JunD or scramble (control) siRNA were subjected to 45 minutes of transient middle cerebral artery occlusion followed by 24 hours of reperfusion. Stroke size, neurological deficit, plasma/brain cytokines, and oxidative stress determined by 4-hydroxynonenal immunofluorescence staining were evaluated 24 hours after reperfusion. Additionally, the role of IL-1β was investigated by treating JunD siRNA mice with an anti–IL-1β monoclonal antibody on reperfusion. Finally, JunD expression was assessed in peripheral blood monocytes isolated from patients with acute ischemic stroke. Results— In vivo JunD knockdown resulted in increased stroke size, reduced neurological function, and increased systemic inflammation, as confirmed by higher neutrophil count and lymphopenia. Brain tissue IL-1β levels were augmented in JunD siRNA mice as compared with scramble siRNA, whereas no difference was detected in IL-6, TNF-α (tumor necrosis factor-α), and 4-hydroxynonenal levels. The deleterious effects of silencing of JunD were rescued by treating mice with an anti–IL-1β antibody. In addition, JunD expression was decreased in peripheral blood monocytes of patients with acute ischemic stroke at 6 and 24 hours after onset of stroke symptoms compared with sex- and age-matched healthy controls. Conclusions— JunD blunts ischemia/reperfusion-induced brain injury via suppression of IL-1β.


2020 ◽  
Vol 21 (18) ◽  
pp. 6686
Author(s):  
Yu Ah Hong ◽  
Ji Eun Kim ◽  
Minjee Jo ◽  
Gang-Jee Ko

Sirtuins (SIRTs) are class III histone deacetylases (HDACs) that play important roles in aging and a wide range of cellular functions. Sirtuins are crucial to numerous biological processes, including proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammals have seven different sirtuins, SIRT1–7, and the diverse biological functions of each sirtuin are due to differences in subcellular localization, expression profiles, and cellular substrates. In this review, we summarize research advances into the role of sirtuins in the pathogenesis of various kidney diseases including acute kidney injury, diabetic kidney disease, renal fibrosis, and kidney aging along with the possible underlying molecular mechanisms. The available evidence indicates that sirtuins have great potential as novel therapeutic targets for the prevention and treatment of kidney diseases.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Betty N. Wu ◽  
Anthony J. O'Sullivan

Women have a higher proportion of body fat compared to men. However, women consume fewer kilojoules per kilogram lean mass and burn fat more preferentially during exercise compared with men. During gestation, women store even greater amounts of fat that cannot be solely attributed to increased energy intake. These observations suggest that the relationship between kilojoules consumed and kilojoules utilised is different in men and women. The reason for these sex differences in energy metabolism is not known; however, it may relate to sex steroids, differences in insulin resistance, or metabolic effects of other hormones such as leptin. When considering lifestyle modifications, sex differences in energy metabolism should be considered. Moreover, elucidating the regulatory role of hormones in energy homeostasis is important for understanding the pathogenesis of obesity and perhaps in the future may lead to ways to reduce body fat with less energy restriction.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Daniela M. Arduíno ◽  
A. Raquel Esteves ◽  
Sandra M. Cardoso

Understanding the molecular basis of Parkinson's disease (PD) has proven to be a major challenge in the field of neurodegenerative diseases. Although several hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of PD, a growing body of evidence has highlighted the role of mitochondrial dysfunction and the disruption of the mechanisms of mitochondrial dynamics in PD and other parkinsonian disorders. In this paper, we comment on the recent advances in how changes in the mitochondrial function and mitochondrial dynamics (fusion/fission, transport, and clearance) contribute to neurodegeneration, specifically focusing on PD. We also evaluate the current controversies in those issues and discuss the role of fusion/fission dynamics in the mitochondrial lifecycle and maintenance. We propose that cellular demise and neurodegeneration in PD are due to the interplay between mitochondrial dysfunction, mitochondrial trafficking disruption, and impaired autophagic clearance.


PPAR Research ◽  
2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
Anne Bugge ◽  
Susanne Mandrup

The peroxisome proliferator-activated receptors (PPARs) are central regulators of fat metabolism, energy homeostasis, proliferation, and inflammation. The three PPAR subtypes, PPAR, /, and activate overlapping but also very different target gene programs. This review summarizes the insights into PPAR subtype-specific transactivation provided by genome-wide studies and discusses the recent advances in the understanding of the molecular mechanisms underlying PPAR subtype specificity with special focus on the regulatory role of AF-1.


2015 ◽  
Vol 224 (3) ◽  
pp. R139-R159 ◽  
Author(s):  
Patricia Joseph-Bravo ◽  
Lorraine Jaimes-Hoy ◽  
Jean-Louis Charli

Energy homeostasis relies on a concerted response of the nervous and endocrine systems to signals evoked by intake, storage, and expenditure of fuels. Glucocorticoids (GCs) and thyroid hormones are involved in meeting immediate energy demands, thus placing the hypothalamo–pituitary–thyroid (HPT) and hypothalamo–pituitary–adrenal axes at a central interface. This review describes the mode of regulation of hypophysiotropic TRHergic neurons and the evidence supporting the concept that they act as metabolic integrators. Emphasis has been be placed on i) the effects of GCs on the modulation of transcription ofTrhin vivoandin vitro, ii) the physiological and molecular mechanisms by which acute or chronic situations of stress and energy demands affect the activity of TRHergic neurons and the HPT axis, and iii) the less explored role of non-hypophysiotropic hypothalamic TRH neurons. The partial evidence gathered so far is indicative of a contrasting involvement of distinct TRH cell types, manifested through variability in cellular phenotype and physiology, including rapid responses to energy demands for thermogenesis or physical activity and nutritional status that may be modified according to stress history.


2004 ◽  
Vol 32 (5) ◽  
pp. 871-872 ◽  
Author(s):  
V. Binet ◽  
C. Goudet ◽  
C. Brajon ◽  
L. Le Corre ◽  
F. Acher ◽  
...  

The GABAB (γ-aminobutyric acid-B) receptor is composed of two subunits, GABAB1 and GABAB2. Both subunits share structural homology with other class-III G-protein-coupled receptors. They contain two main domains, a heptahelical domain typical of all G-protein-coupled receptors and a large ECD (extracellular domain). It has not been demonstrated whether the association of these two subunits is always required for function. However, GABAB2 plays a major role in coupling with G-proteins, and GABAB1 has been shown to bind GABA. To date, only ligands interacting with GABAB1-ECD have been identified. In the present study, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABAB receptor. We have shown that it can weakly activate the wild-type GABAB receptor, but also the GABAB2 expressed alone, thus being the first described agonist of GABAB2. CGP7930 retains its weak agonist activity on a GABAB2 subunit deleted of its ECD. Thus the heptahelical domain of GABAB2 behaves similar to a rhodopsin-like receptor. These results open new strategies for studying the mechanism of activation of GABAB receptor and examine any possible role of GABAB2.


Sign in / Sign up

Export Citation Format

Share Document