scholarly journals Nanocoating Is a New Way for Biofouling Prevention

2021 ◽  
Vol 3 ◽  
Author(s):  
Santosh Kumar ◽  
Fei Ye ◽  
Sergey Dobretsov ◽  
Joydeep Dutta

Biofouling is a major concern to the maritime industry. Biofouling increases fuel consumption, accelerates corrosion, clogs membranes and pipes, and reduces the buoyancy of marine installations, such as ships, platforms, and nets. While traditionally marine installations are protected by toxic biocidal coatings, due to recent environmental concerns and legislation, novel nanomaterial-based anti-fouling coatings are being developed. Hybrid nanocomposites of organic-inorganic materials give a possibility to combine the characteristics of both groups of material generating opportunities to prevent biofouling. The development of bio-inspired surface designs, progress in polymer science and advances in nanotechnology is significantly contributing to the development of eco-friendly marine coatings containing photocatalytic nanomaterials. The review mainly discusses photocatalysis, antifouling activity, and formulation of coatings using metal and metal oxide nanomaterials (nanoparticles, nanowires, nanorods). Additionally, applications of nanocomposite coatings for inhibition of micro- and macro-fouling in marine environments are reviewed.

Marine Drugs ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. 489
Author(s):  
Cátia Vilas-Boas ◽  
Francisca Carvalhal ◽  
Beatriz Pereira ◽  
Sílvia Carvalho ◽  
Emília Sousa ◽  
...  

Marine biofouling represents a global economic and ecological challenge and few eco-friendly antifouling agents are available. The aim of this work was to establish the proof of concept that a recently synthesized nature-inspired compound (gallic acid persulfate, GAP) can act as an eco-friendly and effective antifoulant when immobilized in coatings through a non-release strategy, promoting a long-lasting antifouling effect. The synthesis of GAP was optimized to provide quantitative yields. GAP water solubility was assessed, showing values higher than 1000 mg/mL. GAP was found to be stable in sterilized natural seawater with a half-life (DT50) of 7 months. GAP was immobilized into several commercial coatings, exhibiting high compatibility with different polymeric matrices. Leaching assays of polydimethylsiloxane and polyurethane-based marine coatings containing GAP confirmed that the chemical immobilization of GAP was successful, since releases up to fivefold lower than the conventional releasing systems of polyurethane-based marine coatings were observed. Furthermore, coatings containing immobilized GAP exhibited the most auspicious anti-settlement effect against Mytilus galloprovincialis larvae for the maximum exposure period (40 h) in laboratory trials. Overall, GAP promises to be an agent capable of improving the antifouling activity of several commercial marine coatings with desirable environmental properties.


Author(s):  
Liliya Yu. Kovalenko ◽  
Vladimir A. Burmistrov

Методом импедансной спектроскопии исследованы протонпроводящие свойства полисурьмяной кислоты (ПСК), допированной ионами ванадия. Для твердых растворов состава H2Sb2–xVxO6·nH2O, кристаллизующихся в структурном типе пирохлора (пр. гр. симм. Fd3m), показано, что увеличение количества ванадия в образце приводит к росту удельной протонной проводимости, которая для крайнего твердого раствора замещения H2Sb1.52V0.48O6·nH2O составляет 66 мСм/м. Из анализа данных диэлектрической спектроскопии при температурах 218–298 К определена энергия активации проводимости, которая составила 30±2 КДж/моль. Предложен механизм протонного транспорта,         согласно которому в допированных ионами ванадия ПСК проводимость осуществляется посистеме водородных связей, образованных молекулами воды, расположенными в гексагональных каналах структуры типа пирохлора, и анионами кислорода октаэдра, формирующего каркас структуры     REFERENCES Stenina I. A., Yaroslavtsev A. B. Low- and intermediate-temperature proton-conducting electrolytes. Mater. 2017. v. 53(3), pp. 253–262. https://doi.org/10.1134/S0020168517030104 Ivanchev S. S., Myakin S. V. Polymer membranesfor fuel cells: manufacture, structure, modifi cation, properties. Russian Chemical Reviews, 2010, v. 79(2), pp.101-117. https://doi.org/10.1070/RC2010v079n02ABE H004070 Luo T., Abdu S., Wessling M. Selectivity of ionexchange membranes: A review. Membr. Sci., 2018,v. 555, pp. 429–454. https://doi.org/10.1016/j.memsci.2018.03.051 Fomenkov A. I., Pinus Yu., Peregudov A. S., Zubavichus Ya. V., Yaroslavtsev A. B., Khokhlov A. R. Proton conductivity of poly(arylene ether ketones) with different sulfonation degrees: Improvement via incorporation of nanodisperse zirconium acid phosphate. Polymer Science Series B, 2007, v. 49(7–8), pp. 177-181. https://doi.org/10.1134/S1560090407070032 Prikhno I. A., Ivanova K. A., Don G. M., Yaroslavtsev A.B. Hybrid membranes based on short side chain perfl uorinated sulfonic acid membranes (Inion) and heteropoly acid salts. Mendeleev Commun, 2018, v. 28(6), pp. 657–658. https://doi.org/10.1016/j.mencom.2018. 11.033 Klestchov D., Burmistrov V., Sheinkman A., Pletnev R. Composition and structure of phases formed in the process of hydrated antimony pentoxide thermolysis. Journal of Solid State Chemistry, 1991, v. 94(2), pp. 220–226. https://doi.ors/10.1016/0022-4596(91)90186-L Yaroshenko F. A., Burmistrov V. A. Dielectric relaxation and protonic conductivity of polyantimonic crystalline acid at low temperatures. Russian Journal of Electrochemistry, 2015, v. 51(5), pp. 391–396. https://doi.org/10.1134/S1023193515050195 Yaroshenko F. A., Burmistrov V. A. Proton conductivity of polyantimonic acid studied by impedance spectroscopy in the temperature range 370–480 K. Mater., 2015, v. 51(8), pp. 783–787. https://doi.org/10.1134/S0020168515080208 Shchelkanova M. S., Pantyukhina M. I., Antonov B. D., Kalashnova A. V. Produce new solid electrolytes based on the Li 8–x Zr 1–xVxO6 system. Butlerov Communications, 2014, v. 38(5), pp. 96–102. URL: https://butlerov.com/stat/reports/details. asp?lang=ru&id=15798 (in Russ.) Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu. A., Kovalev I. N., Galimov D. M. Synthesis of the solid solutions H2Sb2–xVxO6·nH2O with the pyrochlore-type structure. Butlerov Communications, 2018, v. 55(8), pp. 24–30. URL: https://butlerov.com/stat/reports/ details.asp?lang=ru&id=30164 (in Russ.) Kovalenko L. Yu., Burmistrov V. A., Lupitskaya Yu.A. Vliyanie otnositel’noy vlazhnosti na protonnuyu provodimost’ polisur’myanykh kislot, dopirovannykh ionami vanadiya [Effect of relative humidity on the proton conductivity of poly-antimony acids doped with vanadium ions]. “Physico-chemical processes in condensed media and interphase boundaries” (FAGRAN-2018)”, materials of the 8th All-Russian Conference with international participation, October 8–11, 2018, Voronezh, pp. 524–525. URL: https://elibrary.ru/item. asp?id=36837531. (in Russ.) Malyshkina I. A., Makhaeva E. E., Gavrilova N. D., Khokhlov A. R. Peculiarities of low-frequency dielectric dispersion in polymer networks based on poly(methacrylic acid). Polymer science. Series A, 2000, v. 42(8), pp. 325–328. URL: https://elibrary.ru/item. asp?id=13345750 Kleschev D. G. Mekhanizm fazovykh prevrashcheniy pri termolize gidrata pen-taoksida v intervale 470–730 K [The mechanism of phase transformations during thermolysis of pentoxide hydrate in the range of 470–730 K]. News of the Academy of Sciences of the USSR. Inorganic materials, 1987, v. 23(7), pp. 1173 –1176. (in Russ.) Armstrong R. D., Dickinson T., Willis P. M. The A. C. impedance of powdered and sintered solid ionic conductors. Electroanalytical Chem. Interfacial Electrochem, 1974, v. 53(3), pp. 389. https://doi.org/10.1016/S0022-0728(74)80077-X Niftaliev S. I., Kozaderova O. A., Kim K. B., Matchin K. S. Research of current transfer process in the system heterogeneous ion-exchange membrane – ammonium nitrate solution. Condensed Matter and Interphases, 2016, v. 18(2), pp. 232–240. URL: http://www.kcmf.vsu.ru/resources/t_18_2_2016_007.pdf (in Russ.) Alvarez R., Guerrero F., Garcia-Belmonte G., Bisquert J. // Materials Sci. 2002, vol. 90, pp. 291. https://doi.org/10.1016/s0921-5107(02)00004-1. Solodukha A. M., Lieberman Z. A. Opredelenie dielektricheskikh parametrov keramiki na osnove dispersii kompleksnogo elektricheskogo modulya [Determination of dielectric parameters of ceramics based on the dispersion of a complex electrical module]. Vestnik VSU, Series of Physics, Mathematics, 2003, no. 2, pp. 67–71. URL: http://www.vestnik.vsu.ru/pdf/physmath/2003/02/pitanov.pdf. (in Russ.) Moti Ram, Chakrabarti S. Dielectric and modulus behavior of LiFe1/2Ni1/2VO4 ceramics. Phys. Chem. Solids, 2008, v. 69(4), pp. 905–912. https://org.org/10.1016/j.jpcs.2007.10.008 Pet’Kov V. I., Sukhanov M. V., Shipilov A. S., Kurazhkovskaya V. S., Borovikova E. Y., Pinus I. Y., Yaroslavtsev A. B. Synthesis and properties of LiZr2(AsO4)3 and LiZr2(AsO4) x (PO4)3–x. Mater., 2014, v. 50(3), pp. 263–272. https://doi.org/10.1134/S0020168514030091 Krasnov A. G., Piir I. V., Sekushin N. A., Baklanova Y. V., Denisova T. A. Electrophysical properties of bismuth titanates with the pyrochlore structure Bi1.6Mx Ti2O7–d (M = In, Li). Russian Journal of Electrochemistry, 2017, v. 53(8), pp. 866-872. https://doi.org/10.1134/S1023193517080122


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 682 ◽  
Author(s):  
Protima Rauwel ◽  
Erwan Rauwel

Cesium is a radioactive fission product generated in nuclear power plants and is disposed of as liquid waste. The recent catastrophe at the Fukushima Daiichi nuclear plant in Japan has increased the 137Cs and 134Cs concentrations in air, soil and water to lethal levels. 137Cs has a half-life of 30.4 years, while the half-life of 134Cs is around two years, therefore the formers’ detrimental effects linger for a longer period. In addition, cesium is easily transported through water bodies making water contamination an urgent issue to address. Presently, efficient water remediation methods towards the extraction of 137Cs are being studied. Prussian blue (PB) and its analogs have shown very high efficiencies in the capture of 137Cs+ ions. In addition, combining them with magnetic nanoparticles such as Fe3O4 allows their recovery via magnetic extraction once exhausted. Graphene and carbon nanotubes (CNT) are the new generation carbon allotropes that possess high specific surface areas. Moreover, the possibility to functionalize them with organic or inorganic materials opens new avenues in water treatment. The combination of PB-CNT/Graphene has shown enhanced 137Cs+ extraction and their possible applications as membranes can be envisaged. This review will survey these nanocomposites, their efficiency in 137Cs+ extraction, their possible toxicity, and prospects in large-scale water remediation and succinctly survey other new developments in 137Cs+ extraction.


2013 ◽  
Vol 85 (2) ◽  
pp. iv
Author(s):  
John C. Plakatouras

It is a privilege to act as the conference editor for this issue of Pure and Applied Chemistry (PAC) dedicated to the 12th Eurasia Conference on Chemical Sciences (EuAsC2S-12). The Eurasia Conferences on Chemical Sciences started in Bangkok in 1988 under the leadership of the founders, Bernd M. Rode (Austria), Hitoshi Ohtaki (Japan), and Ivano Bertini (Italy), together with Salag Dhabandana (Bangkok).During the preparation of the present issue of PAC, on 7 July 2012, Ivano Bertini, leading scientist in chemistry and biology, passed away. We will always remember him for his unselfish leadership and enormous contribution in paramagnetic NMR.The aim of the conferences is to foster friendship and exchange of knowledge between chemists in the Eurasian supercontinent as well as those in the Americas and Australia. While all previous conferences have been held in Asia or the Middle East, EuAsC2S-12 took place at the Hotel Corfu Chandris, on the island of Corfu, Greece, on 16-21 April 2012 with the aim of encouraging and enhancing the participation of European scientists and thus help to make them better known. EuAsC2S-12 was organized by the University of Ioannina on the Greek mainland with Emeritus Prof. Nick Hadjiliadis as Chair of the local organizing committee.The total number of participants was 450, with ca. 400 active delegates from 60 countries. The scientific program comprised 14 sessions, each of which was represented by invited speakers and further oral presentations on the following topics:- bioinorganic chemistry- pharmaceutical chemistry and drug design- organic synthesis and natural products- environmental and green chemistry- physical chemistry and spectroscopy- theoretical and computational chemistry- organometallic chemistry and catalysis- clinical biochemistry and molecular diagnostics- coordination chemistry and inorganic polymers- analytical and solution chemistry- supramolecular chemistry and nanomaterials- food chemistry- chemical education- polymer scienceThe scientific program, which was accompanied by a rich social activities program, included 9 plenary lectures, 214 oral presentations, and 190 poster presentations.The collection of 13 papers in this issue of PAC is a representation of the topics related to inorganic chemistry, covered in the lectures held during EuAsC2S-12. The papers represent a good cross-section of major themes ranging from traditional coordination chemistry, bio inorganic chemistry, supramolecular coordination chemistry, catalysis, and inorganic materials.The 13th Eurasia conference will be held in India in December 2014 with Prof. N. Jayaraman, Bangalore as head of the organizing committee.John C. PlakatourasConference Editor


2014 ◽  
Vol 53 (18) ◽  
pp. 7655-7659 ◽  
Author(s):  
Miriam Pérez ◽  
Marianela Sánchez ◽  
Mirta Stupak ◽  
Mónica García ◽  
María T. Rojo de Almeida ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (21) ◽  
pp. 1577-1582 ◽  
Author(s):  
A. Reyes-Mayer ◽  
JA. Arcos Casarrubias ◽  
R. Guardian-Tapia ◽  
A. Romo-Uribe

ABSTRACTOrganic-inorganic hybrid nanocomposites are considered a new generation of high performance materials because they combine both the advantages of inorganic materials (stiffness, high thermal stability, barrier properties, optical, catalytic, electrical and thermal conductivity among others) and organic polymers (flexibility, dielectric, toughness, lightweight, processing). Each part of a nanocomposite has a synergistic function in its performance and has much better combination properties than a single material. We report on the thermo-mechanical properties and morphology of polyacrylic-nanosilica (SiO2) composites prepared in-situ via emulsion polymerization, using a semi-continuous mode. The latex emulsion thus obtained was stable for at least six months. Moreover, this process produced controlled molecular weight in the final latex and low formation of agglomerates. Films drawn from the latex exhibited excellent optical transparency, suggesting good dispersion of the nanosilica, and confirmed by scanning electron microscopy (SEM). There was an increase in glass transition temperature, Tg, suggesting a modification of molecular dynamics; hydrophobic behavior, as probed by water contact angle, was also promoted. Moreover, the Young’s modulus of the nanostructured latex films increased up to 57% with only 3 wt% nanosilica, therefore denoting a reinforcing effect of the nanoparticles.


2018 ◽  
Vol 20 (37) ◽  
pp. 23837-23846 ◽  
Author(s):  
Yingying Shan ◽  
Zhensheng Lyu ◽  
Xinwei Guan ◽  
Adnan Younis ◽  
Guoliang Yuan ◽  
...  

We review emerging low-cost solution-processed resistive random-access memory (ReRAM) made of either hybrid nanocomposites or hybrid organo-lead halide perovskites.


Author(s):  
David J. Smith

The era of atomic-resolution electron microscopy has finally arrived. In virtually all inorganic materials, including oxides, metals, semiconductors and ceramics, it is possible to image individual atomic columns in low-index zone-axis projections. A whole host of important materials’ problems involving defects and departures from nonstoichiometry on the atomic scale are waiting to be tackled by the new generation of intermediate voltage (300-400keV) electron microscopes. In this review, some existing problems and limitations associated with imaging inorganic materials are briefly discussed. The more immediate problems encountered with organic and biological materials are considered elsewhere.Microscope resolution. It is less than a decade since the state-of-the-art, commercially available TEM was a 200kV instrument with a spherical aberration coefficient of 1.2mm, and an interpretable resolution limit (ie. first zero crossover of the contrast transfer function) of 2.5A.


Author(s):  
Xiao Zhang

Polymer microscopy involves multiple imaging techniques. Speed, simplicity, and productivity are key factors in running an industrial polymer microscopy lab. In polymer science, the morphology of a multi-phase blend is often the link between process and properties. The extent to which the researcher can quantify the morphology determines the strength of the link. To aid the polymer microscopist in these tasks, digital imaging systems are becoming more prevalent. Advances in computers, digital imaging hardware and software, and network technologies have made it possible to implement digital imaging systems in industrial microscopy labs.


Author(s):  
Patricia G. Arscott ◽  
Gil Lee ◽  
Victor A. Bloomfield ◽  
D. Fennell Evans

STM is one of the most promising techniques available for visualizing the fine details of biomolecular structure. It has been used to map the surface topography of inorganic materials in atomic dimensions, and thus has the resolving power not only to determine the conformation of small molecules but to distinguish site-specific features within a molecule. That level of detail is of critical importance in understanding the relationship between form and function in biological systems. The size, shape, and accessibility of molecular structures can be determined much more accurately by STM than by electron microscopy since no staining, shadowing or labeling with heavy metals is required, and there is no exposure to damaging radiation by electrons. Crystallography and most other physical techniques do not give information about individual molecules.We have obtained striking images of DNA and RNA, using calf thymus DNA and two synthetic polynucleotides, poly(dG-me5dC)·poly(dG-me5dC) and poly(rA)·poly(rU).


Sign in / Sign up

Export Citation Format

Share Document