scholarly journals Adenosinergic Signaling as a Key Modulator of the Glioma Microenvironment and Reactive Astrocytes

2022 ◽  
Vol 15 ◽  
Author(s):  
Gabriela N. Debom ◽  
Dominique S. Rubenich ◽  
Elizandra Braganhol

Astrocytes are numerous glial cells of the central nervous system (CNS) and play important roles in brain homeostasis. These cells can directly communicate with neurons by releasing gliotransmitters, such as adenosine triphosphate (ATP) and glutamate, into the multipartite synapse. Moreover, astrocytes respond to tissue injury in the CNS environment. Recently, astrocytic heterogeneity and plasticity have been discussed by several authors, with studies proposing a spectrum of astrocytic activation characterized by A1/neurotoxic and A2/neuroprotective polarization extremes. The fundamental roles of astrocytes in communicating with other cells and sustaining homeostasis are regulated by purinergic signaling. In the CNS environment, the gliotransmitter ATP acts cooperatively with other glial signaling molecules, such as cytokines, which may impact CNS functions by facilitating/inhibiting neurotransmitter release. Adenosine (ADO), the main product of extracellular ATP metabolism, is an important homeostatic modulator and acts as a neuromodulator in synaptic transmission via P1 receptor sensitization. Furthermore, purinergic signaling is a key factor in the tumor microenvironment (TME), as damaged cells release ATP, leading to ADO accumulation in the TME through the ectonucleotidase cascade. Indeed, the enzyme CD73, which converts AMP to ADO, is overexpressed in glioblastoma cells; this upregulation is associated with tumor aggressiveness. Because of the crucial activity of CD73 in these cells, extracellular ADO accumulation in the TME contributes to sustaining glioblastoma immune escape while promoting A2-like activation. The present review describes the importance of ADO in modulating astrocyte polarization and simultaneously promoting tumor growth. We also discuss whether targeting of CD73 to block ADO production can be used as an alternative cancer therapy.

2015 ◽  
Vol 63 (1) ◽  
Author(s):  
Marek Cieślak ◽  
Joanna Czarnecka ◽  
Katarzyna Roszek

Ecto-purines and ecto-pyrimidines are present in the extracellular space of the central nervous system (CNS). Together with P1 and P2 receptors and nucleotides metabolizing ecto-enzymes, they make signaling system involved in neurotransmission, the modulation of sensory signals, including pain stimuli conduction, and the induction of apoptosis and necrosis of the cells. Purines and pyrimidines have a dual effect: positive (neuroprotective) of nucleosides, and negative (pro-inflammatory and pro-apoptotic) of nucleotides. Adenosine-5'-triphosphate (ATP) in the CNS triggers the pro-inflammatory reactions, predominantly by activation of the P2X7 receptor, which results in production and release of pro-inflammatory cytokines. In contrast to ATP, adenosine acts generally as an anti-inflammatory agent and plays an important role in neuroprotection. Currently, it is believed that the initiation of CNS diseases, including mental disorders, is caused by any imbalance between the concentration of ATP and adenosine in the extracellular space. Genetic tests provide also the evidence for the participation of purinergic signaling in psychiatric disorders. It is believed that any action leading to the effective increase of adenosine concentration: activation of nucleotide metabolizing ecto-enzymes (mainly NTPDases - nucleoside triphosphate diphosphohydrolases), inhibition of adenosine deaminase and/or adenosine kinase activity as well as therapies using P1 receptor agonists (adenosine or its analogues) might be beneficial in therapy of psychiatric disorders.


2021 ◽  
Vol 10 (11) ◽  
pp. 2358
Author(s):  
Maria Grazia Giovannini ◽  
Daniele Lana ◽  
Chiara Traini ◽  
Maria Giuliana Vannucchi

The microbiota–gut system can be thought of as a single unit that interacts with the brain via the “two-way” microbiota–gut–brain axis. Through this axis, a constant interplay mediated by the several products originating from the microbiota guarantees the physiological development and shaping of the gut and the brain. In the present review will be described the modalities through which the microbiota and gut control each other, and the main microbiota products conditioning both local and brain homeostasis. Much evidence has accumulated over the past decade in favor of a significant association between dysbiosis, neuroinflammation and neurodegeneration. Presently, the pathogenetic mechanisms triggered by molecules produced by the altered microbiota, also responsible for the onset and evolution of Alzheimer disease, will be described. Our attention will be focused on the role of astrocytes and microglia. Numerous studies have progressively demonstrated how these glial cells are important to ensure an adequate environment for neuronal activity in healthy conditions. Furthermore, it is becoming evident how both cell types can mediate the onset of neuroinflammation and lead to neurodegeneration when subjected to pathological stimuli. Based on this information, the role of the major microbiota products in shifting the activation profiles of astrocytes and microglia from a healthy to a diseased state will be discussed, focusing on Alzheimer disease pathogenesis.


Author(s):  
Lorenzo Ceccarelli ◽  
Laura Marchetti ◽  
Chiara Giacomelli ◽  
Claudia Martini

Microglia are the major component of the innate immune system in the central nervous system. They promote the maintenance of brain homeostasis as well as support inflammatory processes that are often related to pathological conditions such as neurodegenerative diseases. Depending on the stimulus received, microglia cells dynamically change their phenotype releasing specific soluble factors and largely modify the cargo of their secreted extracellular vesicles (EVs). Despite the mechanisms at the basis of microglia actions have not been completely clarified, the recognized functions exerted by their EVs in patho-physiological conditions represent the proof of the crucial role of these organelles in tuning cell-to-cell communication, promoting either protective or harmful effects. Consistently, in vitro cell models to better elucidate microglia EV production and mechanisms of their release have been increased in the last years. In this review, the main microglial cellular models that have been developed and validated will be described and discussed, with particular focus on those used to produce and derive EVs. The advantages and disadvantages of their use will be evidenced too. Finally, given the wide interest in applying EVs in diagnosis and therapy too, the heterogeneity of available models for producing microglia EVs is here underlined, to prompt a cross-check or comparison among them.


2019 ◽  
Vol 63 (2) ◽  
Author(s):  
Nan Xu ◽  
Ang-Di Li ◽  
Li-Li Ji ◽  
Yao Ye ◽  
Zhen-Yu Wang ◽  
...  

Cognitive impairment in Alzheimer’s disease (AD) is usually accompanied by synaptic loss in both the hippocampus and neocortex. In the early stage of AD, amyloid β-induced synapse changes is the main reason, while in the later stage, the accumulation of Tau protein promotes synapse degeneration as the key factor leading to dementia. MicroRNA (miRNA) is closely related to the expression changes of many AD-related genes. One of the most abundant brain-enriched miRNAs is miR-132, which has been shown to regulate both neuron morphogenesis and plasticity. It has been reported that miR-132 is significantly reduced in the brains of Alzheimer’s patients. Genetic deletion of miR-132 in mice promotes Aβ deposition, leading to impaired memory and enhanced Tau pathology, but how the miRNA-mediated gene expression dysregulation contributes to AD pathology remains unclear. Here we found the possible downstream target of miR-132 by in silico analysis, namely C1q. C1q is the primary protein of classical complement cascade, which is highly expressed in the synaptic regions of the central nervous system in Alzheimer’s patients. However, it is not clear whether miR-132 plays a role in AD through regulating C1q. To address this question, the APP/PS1 transgenic mice were transfected with miR-132 and given C1 inhibitors. Behavior tests were conducted to assess memory and cognitive abilities seven days after administration. In addition, we analyzed the expression of PSD95, Synapsin-1 and phosphorylated (p)-Synapsin. We found that the expression levels of the synaptic proteins treated with miR-132 or C1INH were significantly increased compared with the AD group. Further RT-qPCR result suggested that miR-132 might regulate C1q expression in AD.


2007 ◽  
Vol 10 (4) ◽  
pp. 300-304 ◽  
Author(s):  
Maren Chan ◽  
Jonathan L. Hecht ◽  
Theonia Boyd ◽  
Seymour Rosen

Cytomegalovirus (CMV) infection is one of the most frequently encountered viral infections of the fetus and induces a wide range of histologic and clinical manifestations. Congenital abnormalities are typically restricted to the central nervous system despite evidence of CMV inclusions occurring in most epithelial cells. Although tissue injury and even glomerulonephritis have been observed in congenital CMV infections, renal multicystic dysplasia has not been reported. Herein, we describe a case of unilateral renal dysplasia in a 19-week fetus with concurrent CMV infection. We believe the present case to be the first description of a virus apparently inducing renal multicystic dysplasia.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Kenji Matsuura ◽  
Mieko Otani ◽  
Masaoki Takano ◽  
Keiichi Kadoyama ◽  
Shogo Matsuyama

Aim. Diabetes with its associated hyperglycemia induces various type of peripheral damage and also impairs the central nervous system (CNS). This study is aimed at clarifying the precise mechanism of diabetes-induced dementia as an impairment of CNS. Methods. The proteomic analysis of the hippocampus and cortex in streptozotocin- (STZ-) treated mouse diabetic model showing dementia was performed using two-dimensional gel electrophoresis (2-DE) followed by mass spectrometry (n=3/group). Results. Significant changes in the expression of 32 proteins and 7 phosphoproteins were observed in the hippocampus and cortex. These identified proteins and phosphoproteins could be functionally classified as cytoskeletal protein, oxidoreductase, protein deubiquitination, energy metabolism, GTPase activation, heme binding, hydrolase, iron storage, neurotransmitter release, protease inhibitor, transcription, glycolysis, antiapoptosis, calcium ion binding, heme metabolic process, protein degradation, vesicular transport, and unknown in the hippocampus or cortex. Additionally, Western blotting validated the changes in translationally controlled tumor protein, ATP-specific succinyl-CoA synthetase beta subunit, and gamma-enolase isoform 1. Conclusions. These findings showed that STZ-induced diabetes changed the expression of proteins and phosphoproteins in the hippocampus and cortex. We propose that alterations in expression levels of these proteins play an important role in diabetes-induced dementia.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Genaro G. Ortiz ◽  
Fermín P. Pacheco-Moisés ◽  
Oscar K. Bitzer-Quintero ◽  
Ana C. Ramírez-Anguiano ◽  
Luis J. Flores-Alvarado ◽  
...  

Multiple sclerosis (MS) exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB), the recruitment of lymphocytes, microglia, and macrophages to lesion sites, the presence of multiple lesions, generally being more pronounced in the brain stem and spinal cord, the predominantly perivascular location of lesions, the temporal maturation of lesions from inflammation through demyelination, to gliosis and partial remyelination, and the presence of immunoglobulin in the central nervous system and cerebrospinal fluid. Lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Pro-inflammatory cytokines amplify the inflammatory cascade by compromising the BBB, recruiting immune cells from the periphery, and activating resident microglia. inflammation-associated oxidative burst in activated microglia and macrophages plays an important role in the demyelination and free radical-mediated tissue injury in the pathogenesis of MS. The inflammatory environment in demyelinating lesions leads to the generation of oxygen- and nitrogen-free radicals as well as proinflammatory cytokines which contribute to the development and progression of the disease. Inflammation can lead to oxidative stress and vice versa. Thus, oxidative stress and inflammation are involved in a self-perpetuating cycle.


Author(s):  
Jack Antel

ABSTRACT:All currently approved therapies for multiple sclerosis (MS) modulate systemic immune components prior to their entry into the central nervous system (CNS). Available data indicate they lack impact on the progressive phases of disease; the more potent systemic immune-directed agents predispose to development of infectious or neoplastic disorders. Development of new agents that enhance disease stage related efficacy and limit systemic toxicity will need to consider the underlying mechanisms related to each phase of the clinical disorder, namely relapses, remission, and progression. This report focuses on disease related mechanisms ongoing within the CNS that contribute to the different phases of MS and how these may serve as potential therapeutic targets. Such mechanisms include CNS compartment specific immunologic properties especially as related to the innate immune system and neural cell-related properties that are determinants of the extent of actual tissue injury and repair (or lack thereof).


2021 ◽  
Vol 15 ◽  
Author(s):  
Yongliang Wang ◽  
Ruxia Han ◽  
Zhejun Xu ◽  
Xiahui Sun ◽  
Chunxue Zhou ◽  
...  

Toxoplasma gondii is neurotropic and affects the function of nerve cells, while the mechanism is unclear. LncRNAs are abundantly enriched in the brain and participated in the delicate regulation of the central nervous system (CNS) development. However, whether these lncRNAs are involved in the regulation of microglia activation during the process of T. gondii infection is largely unknown. In this study, the upregulation of a novel lncRNA147410.3 (ENSMUST00000147410.3) was identified as a key factor to influence this process. The target gene of lncRNA147410.3 was predicted and identified as Hoxb3. The localization of lncRNA147410.3 in the brain and cells was proved in the nucleus of neuroglia through FISH assay. Furthermore, the function of lncRNA147410.3 on neuronal cell was confirmed that lncRNA147410.3 could affect proliferation, differentiation, and apoptosis of mouse microglia by positively regulating Hoxb3. Thus, our study explored the modulatory action of lncRNA147410.3 in T. gondii infected mouse brain, providing a scientific basis for using lncRNA147410.3 as a therapeutic target to treat neurological disorder induced by T. gondii.


2020 ◽  
Vol 5 (7) ◽  

At present, a large increase in global alcoholics, the resulting problems associated with alcohol dependence cognitive dysfunction has become increasingly serious, the domestic and foreign research shows that long-term excessive drinking seriously damage the body organs, this paper mainly study the influence of the alcohol dependence on the central nervous system, from signal transduction, oxidative stress and neuritic response, neurotransmitter release and its receptor, nutrition metabolism, brain structure change analysis of alcohol dependence summarized research progress to do related to the pathogenesis of cognitive impairment.


Sign in / Sign up

Export Citation Format

Share Document