scholarly journals Special Patterns of Dynamic Brain Networks Discriminate Between Face and Non-face Processing: A Single-Trial EEG Study

2021 ◽  
Vol 15 ◽  
Author(s):  
Zhongliang Yin ◽  
Yue Wang ◽  
Minghao Dong ◽  
Shenghan Ren ◽  
Haihong Hu ◽  
...  

Face processing is a spatiotemporal dynamic process involving widely distributed and closely connected brain regions. Although previous studies have examined the topological differences in brain networks between face and non-face processing, the time-varying patterns at different processing stages have not been fully characterized. In this study, dynamic brain networks were used to explore the mechanism of face processing in human brain. We constructed a set of brain networks based on consecutive short EEG segments recorded during face and non-face (ketch) processing respectively, and analyzed the topological characteristic of these brain networks by graph theory. We found that the topological differences of the backbone of original brain networks (the minimum spanning tree, MST) between face and ketch processing changed dynamically. Specifically, during face processing, the MST was more line-like over alpha band in 0–100 ms time window after stimuli onset, and more star-like over theta and alpha bands in 100–200 and 200–300 ms time windows. The results indicated that the brain network was more efficient for information transfer and exchange during face processing compared with non-face processing. In the MST, the nodes with significant differences of betweenness centrality and degree were mainly located in the left frontal area and ventral visual pathway, which were involved in the face-related regions. In addition, the special MST patterns can discriminate between face and ketch processing by an accuracy of 93.39%. Our results suggested that special MST structures of dynamic brain networks reflected the potential mechanism of face processing in human brain.

2021 ◽  
pp. 1-23
Author(s):  
Enrico Amico ◽  
Kausar Abbas ◽  
Duy Anh Duong-Tran ◽  
Uttara Tipnis ◽  
Meenusree Rajapandian ◽  
...  

Modeling communication dynamics in the brain is a key challenge in network neuroscience. We present here a framework that combines two measurements for any system where different communication processes are taking place on top of a fixed structural topology: Path Processing Score (PPS) estimates how much the brain signal has changed or has been transformed between any two brain regions (source and target); Path Broadcasting Strength (PBS) estimates the propagation of the signal through edges adjacent to the path being assessed. We use PPS and PBS to explore communication dynamics in large-scale brain networks. We show that brain communication dynamics can be divided into three main “communication regimes” of information transfer: absent communication (no communication happening); relay communication (information is being transferred almost intact); transducted communication (the information is being transformed). We use PBS to categorize brain regions based on the way they broadcast information. Subcortical regions are mainly direct broadcasters to multiple receivers; Temporal and frontal nodes mainly operate as broadcast relay brain stations; Visual and somato-motor cortices act as multi-channel transducted broadcasters. This work paves the way towards the field of brain network information theory by providing a principled methodology to explore communication dynamics in large-scale brain networks.


2019 ◽  
Vol 3 (2) ◽  
pp. 567-588 ◽  
Author(s):  
Kirsten Hilger ◽  
Christian J. Fiebach

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders with significant and often lifelong effects on social, emotional, and cognitive functioning. Influential neurocognitive models of ADHD link behavioral symptoms to altered connections between and within functional brain networks. Here, we investigate whether network-based theories of ADHD can be generalized to understanding variations in ADHD-related behaviors within the normal (i.e., clinically unaffected) adult population. In a large and representative sample, self-rated presence of ADHD symptoms varied widely; only 8 out of 291 participants scored in the clinical range. Subject-specific brain network graphs were modeled from functional MRI resting-state data and revealed significant associations between (nonclinical) ADHD symptoms and region-specific profiles of between-module and within-module connectivity. Effects were located in brain regions associated with multiple neuronal systems including the default-mode network, the salience network, and the central executive system. Our results are consistent with network perspectives of ADHD and provide further evidence for the relevance of an appropriate information transfer between task-negative (default-mode) and task-positive brain regions. More generally, our findings support a dimensional conceptualization of ADHD and contribute to a growing understanding of cognition as an emerging property of functional brain networks.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Zhengkui Weng ◽  
Bin Wang ◽  
Jie Xue ◽  
Baojie Yang ◽  
Hui Liu ◽  
...  

As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rieke Fruengel ◽  
Timo Bröhl ◽  
Thorsten Rings ◽  
Klaus Lehnertz

AbstractPrevious research has indicated that temporal changes of centrality of specific nodes in human evolving large-scale epileptic brain networks carry information predictive of impending seizures. Centrality is a fundamental network-theoretical concept that allows one to assess the role a node plays in a network. This concept allows for various interpretations, which is reflected in a number of centrality indices. Here we aim to achieve a more general understanding of local and global network reconfigurations during the pre-seizure period as indicated by changes of different node centrality indices. To this end, we investigate—in a time-resolved manner—evolving large-scale epileptic brain networks that we derived from multi-day, multi-electrode intracranial electroencephalograpic recordings from a large but inhomogeneous group of subjects with pharmacoresistant epilepsies with different anatomical origins. We estimate multiple centrality indices to assess the various roles the nodes play while the networks transit from the seizure-free to the pre-seizure period. Our findings allow us to formulate several major scenarios for the reconfiguration of an evolving epileptic brain network prior to seizures, which indicate that there is likely not a single network mechanism underlying seizure generation. Rather, local and global aspects of the pre-seizure network reconfiguration affect virtually all network constituents, from the various brain regions to the functional connections between them.


2019 ◽  
Vol 3 (2) ◽  
pp. 539-550 ◽  
Author(s):  
Véronique Paban ◽  
Julien Modolo ◽  
Ahmad Mheich ◽  
Mahmoud Hassan

We aimed at identifying the potential relationship between the dynamical properties of the human functional network at rest and one of the most prominent traits of personality, namely resilience. To tackle this issue, we used resting-state EEG data recorded from 45 healthy subjects. Resilience was quantified using the 10-item Connor-Davidson Resilience Scale (CD-RISC). By using a sliding windows approach, brain networks in each EEG frequency band (delta, theta, alpha, and beta) were constructed using the EEG source-space connectivity method. Brain networks dynamics were evaluated using the network flexibility, linked with the tendency of a given node to change its modular affiliation over time. The results revealed a negative correlation between the psychological resilience and the brain network flexibility for a limited number of brain regions within the delta, alpha, and beta bands. This study provides evidence that network flexibility, a metric of dynamic functional networks, is strongly correlated with psychological resilience as assessed from personality testing. Beyond this proof-of-principle that reliable EEG-based quantities representative of personality traits can be identified, this motivates further investigation regarding the full spectrum of personality aspects and their relationship with functional networks.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Ruedeerat Keerativittayayut ◽  
Ryuta Aoki ◽  
Mitra Taghizadeh Sarabi ◽  
Koji Jimura ◽  
Kiyoshi Nakahara

Although activation/deactivation of specific brain regions has been shown to be predictive of successful memory encoding, the relationship between time-varying large-scale brain networks and fluctuations of memory encoding performance remains unclear. Here, we investigated time-varying functional connectivity patterns across the human brain in periods of 30–40 s, which have recently been implicated in various cognitive functions. During functional magnetic resonance imaging, participants performed a memory encoding task, and their performance was assessed with a subsequent surprise memory test. A graph analysis of functional connectivity patterns revealed that increased integration of the subcortical, default-mode, salience, and visual subnetworks with other subnetworks is a hallmark of successful memory encoding. Moreover, multivariate analysis using the graph metrics of integration reliably classified the brain network states into the period of high (vs. low) memory encoding performance. Our findings suggest that a diverse set of brain systems dynamically interact to support successful memory encoding.


Author(s):  
A. Thushara ◽  
C. Ushadevi Amma ◽  
Ansamma John

Alzheimer’s Disease (AD) is basically a progressive neurodegenerative disorder associated with abnormal brain networks that affect millions of elderly people and degrades their quality of life. The abnormalities in brain networks are due to the disruption of White Matter (WM) fiber tracts that connect the brain regions. Diffusion-Weighted Imaging (DWI) captures the brain’s WM integrity. Here, the correlation betwixt the WM degeneration and also AD is investigated by utilizing graph theory as well as Machine Learning (ML) algorithms. By using the DW image obtained from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, the brain graph of each subject is constructed. The features extracted from the brain graph form the basis to differentiate between Mild Cognitive Impairment (MCI), Control Normal (CN) and AD subjects. Performance evaluation is done using binary and multiclass classification algorithms and obtained an accuracy that outperforms the current top-notch DWI-based studies.


Author(s):  
Robert W. Thatcher ◽  
Carl J. Biver ◽  
Ernesto Palermero Soler ◽  
Joel Lubar ◽  
J. Lucas Koberda

Human EEG biofeedback (neurofeedback) started in the 1940s using 1 EEG recording channel, then to 4 channels in the 1990s. New advancements in electrical neuroimaging expanded EEG biofeedback to 19 channels using Low Resolution Electromagnetic Tomography (LORETA) three-dimensional current sources of the EEG. In 2004–2006 the concept of a “real-time” comparison of the EEG to a healthy reference database was developed and tested using surface EEG z-score neurofeedback based on a statistical bell curve called “real-time” z-scores. The “real-time” or “live” normative reference database comparison was developed to help reduce the uncertainty of what threshold to select to activate a feedback signal and to unify all EEG measures to a single value, i.e., the distance from the mean of an age matched reference sample. In 2009 LORETA z-score neurofeedback further increased the specificity by targeting brain network hubs referred to as Brodmann areas. A symptom check list program to help link symptoms to dysregulation of brain networks based on fMRI and PET and neurology was created in 2009. The symptom checklist and NIH based networks linking symptoms to brain networks grew out of the human brain mapping program starting in 1990 which is continuing today. A goal is to increase specificity of EEG biofeedback by targeting brain network hubs and connections between hubs likely linked to the patient’s symptoms. New advancements in electrical neuroimaging introduced in 2017 provide increased resolution of three-dimensional source localization with 12,700 voxels using swLORETA with the capacity to conduct cerebellar neurofeedback and neurofeedback of subcortical brain hubs such as the thalamus, amygdala and habenula. Future applications of swLORETA z-score neurofeedback represents another example of the transfer of knowledge gained by the human brain mapping initiatives to further aid in helping people with cognition problems as well as balance problems and parkinsonism. A brief review of the past, present and future predictions of z-score neurofeedback are discussed with special emphasis on new developments that point toward a bright and enlightened future in the field of EEG biofeedback.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Bastian Cheng ◽  
Eckhard Schlemm ◽  
Robert Schulz ◽  
Marlene Boenstrup ◽  
Arnaud Messé ◽  
...  

Abstract Beyond disruption of neuronal pathways, focal stroke lesions induce structural disintegration of distant, yet connected brain regions via retrograde neuronal degeneration. Stroke lesions alter functional brain connectivity and topology in large-scale brain networks. These changes are associated with the degree of clinical impairment and recovery. In contrast, changes of large scale, structural brain networks after stroke are less well reported. We therefore aimed to analyse the impact of focal lesions on the structural connectome after stroke based on data from diffusion-weighted imaging and probabilistic fibre tracking. In total, 17 patients (mean age 64.5 ± 8.4 years) with upper limb motor deficits in the chronic stage after stroke and 21 healthy participants (mean age 64.9 ± 10.3 years) were included. Clinical deficits were evaluated by grip strength and the upper extremity Fugl-Meyer assessment. We calculated global and local graph theoretical measures to characterize topological changes in the structural connectome. Results from our analysis demonstrated significant alterations of network topology in both ipsi- and contralesional, primarily unaffected, hemispheres after stroke. Global efficiency was significantly lower in stroke connectomes as an indicator of overall reduced capacity for information transfer between distant brain areas. Furthermore, topology of structural connectomes was shifted toward a higher degree of segregation as indicated by significantly higher values of global clustering and modularity. On a level of local network parameters, these effects were most pronounced in a subnetwork of cortico-subcortical brain regions involved in motor control. Structural changes were not significantly associated with clinical measures. We propose that the observed network changes in our patients are best explained by the disruption of inter- and intrahemispheric, long white matter fibre tracts connecting distant brain regions. Our results add novel insights on topological changes of structural large-scale brain networks in the ipsi- and contralesional hemisphere after stroke.


Sign in / Sign up

Export Citation Format

Share Document